etcd raft library設計原理和使用

早在2013年11月份,在raft論文還只能在網上下載到草稿版時,我曾經寫過一篇blog對其進行簡要分析。4年過去了,各類raft協議的講解鋪天蓋地,raft也確實獲得了普遍的應用。其中最知名的應用莫過於etcd。etcd將raft協議自己實現爲一個library,位於https://github.com/coreos/etcd/tree/master/raft,而後自己做爲一個應用使用它。html

本文不講解raft協議核心內容,而是站在一個etcd raft library使用者的角度,講解要用上這個library須要瞭解的東西。node

這個library使用起來相對來講仍是有點麻煩。官方有一個使用示例在 https://github.com/coreos/etcd/tree/master/contrib/raftexample。總體來講,這個庫實現了raft協議核心的內容,好比append log的邏輯,選主邏輯,snapshot,成員變動等邏輯。須要明確的是:library沒有實現消息的網絡傳輸和接收,庫只會把一些待發送的消息保存在內存中,用戶自定義的網絡傳輸層取出消息併發送出去,而且在網絡接收端,須要調一個library的函數,用於將收到的消息傳入library,後面會詳細說明。同時,library定義了一個Storage接口,須要library的使用者自行實現。git

Storage接口以下:github

// Storage is an interface that may be implemented by the application
// to retrieve log entries from storage.
//
// If any Storage method returns an error, the raft instance will
// become inoperable and refuse to participate in elections; the
// application is responsible for cleanup and recovery in this case.
type Storage interface {
    // InitialState returns the saved HardState and ConfState information.
    InitialState() (pb.HardState, pb.ConfState, error)
    // Entries returns a slice of log entries in the range [lo,hi).
    // MaxSize limits the total size of the log entries returned, but
    // Entries returns at least one entry if any.
    Entries(lo, hi, maxSize uint64) ([]pb.Entry, error)
    // Term returns the term of entry i, which must be in the range
    // [FirstIndex()-1, LastIndex()]. The term of the entry before
    // FirstIndex is retained for matching purposes even though the
    // rest of that entry may not be available.
    Term(i uint64) (uint64, error)
    // LastIndex returns the index of the last entry in the log.
    LastIndex() (uint64, error)
    // FirstIndex returns the index of the first log entry that is
    // possibly available via Entries (older entries have been incorporated
    // into the latest Snapshot; if storage only contains the dummy entry the
    // first log entry is not available).
    FirstIndex() (uint64, error)
    // Snapshot returns the most recent snapshot.
    // If snapshot is temporarily unavailable, it should return ErrSnapshotTemporarilyUnavailable,
    // so raft state machine could know that Storage needs some time to prepare
    // snapshot and call Snapshot later.
    Snapshot() (pb.Snapshot, error)
}

這些接口在library中會被用到。熟悉raft協議的人不難理解。上面提到的官方示例https://github.com/coreos/etcd/tree/master/contrib/raftexample中使用了library自帶的MemoryStorage,和etcd的wal和snap包作持久化,重啓的時候從wal和snap中獲取日誌恢復MemoryStorage。網絡

要提供這種IO/網絡密集型的東西,提升吞吐最好的手段就是batch加批處理了。etcd raft library正是這麼作的。併發

下面看一下爲了作這事,etcd提供的核心抽象Ready結構體:app

// Ready encapsulates the entries and messages that are ready to read,
// be saved to stable storage, committed or sent to other peers.
// All fields in Ready are read-only.
type Ready struct {
    // The current volatile state of a Node.
    // SoftState will be nil if there is no update.
    // It is not required to consume or store SoftState.
    *SoftState

    // The current state of a Node to be saved to stable storage BEFORE
    // Messages are sent.
    // HardState will be equal to empty state if there is no update.
    pb.HardState

    // ReadStates can be used for node to serve linearizable read requests locally
    // when its applied index is greater than the index in ReadState.
    // Note that the readState will be returned when raft receives msgReadIndex.
    // The returned is only valid for the request that requested to read.
    ReadStates []ReadState

    // Entries specifies entries to be saved to stable storage BEFORE
    // Messages are sent.
    Entries []pb.Entry

    // Snapshot specifies the snapshot to be saved to stable storage.
    Snapshot pb.Snapshot

    // CommittedEntries specifies entries to be committed to a
    // store/state-machine. These have previously been committed to stable
    // store.
    CommittedEntries []pb.Entry

    // Messages specifies outbound messages to be sent AFTER Entries are
    // committed to stable storage.
    // If it contains a MsgSnap message, the application MUST report back to raft
    // when the snapshot has been received or has failed by calling ReportSnapshot.
    Messages []pb.Message

    // MustSync indicates whether the HardState and Entries must be synchronously
    // written to disk or if an asynchronous write is permissible.
    MustSync bool
}

能夠說,這個Ready結構體封裝了一批更新,這些更新包括:async

  • pb.HardState: 包含當前節點見過的最大的term,以及在這個term給誰投過票,已經當前節點知道的commit index
  • Messages: 須要廣播給全部peers的消息
  • CommittedEntries:已經commit了,尚未apply到狀態機的日誌
  • Snapshot:須要持久化的快照

庫的使用者從node結構體提供的一個ready channel中不斷的pop出一個個的Ready進行處理,庫使用者經過以下方法拿到Ready channel:函數

func (n *node) Ready() <-chan Ready { return n.readyc }

應用須要對Ready的處理包括:ui

  1. 將HardState, Entries, Snapshot持久化到storage。
  2. 將Messages(上文提到的msgs)非阻塞的廣播給其餘peers
  3. 將CommittedEntries(已經commit尚未apply)應用到狀態機。
  4. 若是發現CommittedEntries中有成員變動類型的entry,調用node的ApplyConfChange()方法讓node知道(這裏和raft論文不同,論文中只要節點收到了成員變動日誌就應用)
  5. 調用Node.Advance()告訴raft node,這批狀態更新處理完了,狀態已經演進了,能夠給我下一批Ready讓我處理。

應用經過raft.StartNode()來啓動raft中的一個副本,函數內部經過啓動一個goroutine運行

func (n *node) run(r *raft)

來啓動服務。

應用經過調用

func (n *node) Propose(ctx context.Context, data []byte) error

來Propose一個請求給raft,被raft開始處理後返回。

增刪節點經過調用

func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error

node結構體包含幾個重要的channel:

// node is the canonical implementation of the Node interface
type node struct {
    propc      chan pb.Message
    recvc      chan pb.Message
    confc      chan pb.ConfChange
    confstatec chan pb.ConfState
    readyc     chan Ready
    advancec   chan struct{}
    tickc      chan struct{}
    done       chan struct{}
    stop       chan struct{}
    status     chan chan Status

    logger Logger
}
  • propc: propc是一個沒有buffer的channel,應用經過Propose接口寫入的請求被封裝成Message被push到propc中,node的run方法從propc中pop出Message,append本身的raft log中,而且將Message放入mailbox中(raft結構體中的msgs []pb.Message),這個msgs會被封裝在Ready中,被應用從readyc中取出來,而後經過應用自定義的transport發送出去。
  • recvc: 應用自定義的transport在收到Message後須要調用

    func (n *node) Step(ctx context.Context, m pb.Message) error
    來把Message放入recvc中,通過一些處理後,一樣,會把須要發送的Message放入到對應peers的mailbox中。後續經過自定義transport發送出去。
  • readyc/advancec: readyc和advancec都是沒有buffer的channel,node.run()內部把相關的一些狀態更新打包成Ready結構體(其中一種狀態就是上面提到的msgs)放入readyc中。應用從readyc中pop出Ready中,對相應的狀態進行處理,處理完成後,調用

    rc.node.Advance()
    往advancec中push一個空結構體告訴raft,已經對這批Ready包含的狀態進行了相應的處理,node.run()內部從advancec中獲得通知後,對內部一些狀態進行處理,好比把已經持久化到storage中的entries從內存(對應type unstable struct)中刪除等。
  • tickc:應用按期往tickc中push空結構體,node.run()會調用tick()函數,對於leader來講,tick()會給其餘peers發心跳,對於follower來講,會檢查是否須要發起選主操做。
  • confc/confstatec:應用從Ready中拿出CommittedEntries,檢查其若是含有成員變動類型的日誌,則須要調用

    func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState

    這個函數會push ConfChange到confc中,confc一樣是個無buffer的channel,node.run()內部會從confc中拿出ConfChange,而後進行真正的增減peers操做,以後將最新的成員組push到confstatec中,而ApplyConfChange函數從confstatec pop出最新的成員組返回給應用。

能夠說,要想用上etcd的raft library仍是須要了解很多東西的。

相關文章
相關標籤/搜索