線性解碼器(Linear Decoder)php
前面第一章提到稀疏自編碼器(http://www.cnblogs.com/bzjia-blog/p/SparseAutoencoder.html)的三層網絡結構,咱們要知足最後一層的輸出:a(3)≈a(1)(即輸入值x)的近似重建。考慮到在最後一層的a(3)=f(z(3)),這裏f通常用sigmoid函數或tanh函數等非線性函數,而將輸出界定在一個範圍內(好比sigmoid函數使結果在[0,1]中)。這對於有些數據組,例如MNIST手寫數字庫中其輸入輸出範圍符合極佳,但並非全部的狀況都知足這個條件。例如,若採用PCA白化,輸入將再也不限制於[0,1],雖可經過縮放數據來確保其符合特定範圍內,但顯然,這不是最好的方式。
html
所以,這裏提到的Linear Decoder就是經過在最後一層用激勵函數:a(3) = z(3)(也即f(z)=z)來實現。這裏要注意到,只是在最後一層用這個激勵函數,其餘隱層的激勵函數仍然是sigmoid函數或者tanh函數,咱們僅在輸出層中使用線性激勵機制。算法
這樣一來,在求梯度的時候,公式:網絡
就應該改爲:app
這個是顯然的,由於f'(z)=1。其餘層的都不須要改變。less
練習:ide
這裏講義給出了一個練習,基本跟稀疏自編碼同樣,只有幾處須要稍微改動一下。函數
linearDecoderExercise.m學習
%% CS294A/CS294W Linear Decoder Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % linear decoder exericse. For this exercise, you will only need to modify % the code in sparseAutoencoderLinearCost.m. You will not need to modify % any code in this file. %%====================================================================== %% STEP 0: Initialization % Here we initialize some parameters used for the exercise. imageChannels = 3; % number of channels (rgb, so 3) patchDim = 8; % patch dimension numPatches = 100000; % number of patches visibleSize = patchDim * patchDim * imageChannels; % number of input units outputSize = visibleSize; % number of output units hiddenSize = 400; % number of hidden units sparsityParam = 0.035; % desired average activation of the hidden units. lambda = 3e-3; % weight decay parameter beta = 5; % weight of sparsity penalty term epsilon = 0.1; % epsilon for ZCA whitening %%====================================================================== %% STEP 1: Create and modify sparseAutoencoderLinearCost.m to use a linear decoder, % and check gradients % You should copy sparseAutoencoderCost.m from your earlier exercise % and rename it to sparseAutoencoderLinearCost.m. % Then you need to rename the function from sparseAutoencoderCost to % sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder % uses a linear decoder instead. Once that is done, you should check % your gradients to verify that they are correct. % NOTE: Modify sparseAutoencoderCost first! % To speed up gradient checking, we will use a reduced network and some % dummy patches debugHiddenSize = 5; debugvisibleSize = 8; patches = rand([8 10]); theta = initializeParameters(debugHiddenSize, debugvisibleSize); [cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ... lambda, sparsityParam, beta, ... patches); % Check gradients numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ... lambda, sparsityParam, beta, ... patches), theta); % Use this to visually compare the gradients side by side disp([numGrad grad]); diff = norm(numGrad-grad)/norm(numGrad+grad); % Should be small. In our implementation, these values are usually less than 1e-9. disp(diff); assert(diff < 1e-9, 'Difference too large. Check your gradient computation again'); % NOTE: Once your gradients check out, you should run step 0 again to % reinitialize the parameters %} %%====================================================================== %% STEP 2: Learn features on small patches % In this step, you will use your sparse autoencoder (which now uses a % linear decoder) to learn features on small patches sampled from related % images. %% STEP 2a: Load patches % In this step, we load 100k patches sampled from the STL10 dataset and % visualize them. Note that these patches have been scaled to [0,1] load stlSampledPatches.mat displayColorNetwork(patches(:, 1:100)); %% STEP 2b: Apply preprocessing % In this sub-step, we preprocess the sampled patches, in particular, % ZCA whitening them. % % In a later exercise on convolution and pooling, you will need to replicate % exactly the preprocessing steps you apply to these patches before % using the autoencoder to learn features on them. Hence, we will save the % ZCA whitening and mean image matrices together with the learned features % later on. % Subtract mean patch (hence zeroing the mean of the patches) meanPatch = mean(patches, 2); patches = bsxfun(@minus, patches, meanPatch); % Apply ZCA whitening sigma = patches * patches' / numPatches; [u, s, v] = svd(sigma); ZCAWhite = u * diag(1 ./ sqrt(diag(s) + epsilon)) * u'; patches = ZCAWhite * patches; displayColorNetwork(patches(:, 1:100)); %% STEP 2c: Learn features % You will now use your sparse autoencoder (with linear decoder) to learn % features on the preprocessed patches. This should take around 45 minutes. theta = initializeParameters(hiddenSize, visibleSize); % Use minFunc to minimize the function addpath minFunc/ options = struct; options.Method = 'lbfgs'; options.maxIter = 400; options.display = 'on'; [optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ... visibleSize, hiddenSize, ... lambda, sparsityParam, ... beta, patches), ... theta, options); % Save the learned features and the preprocessing matrices for use in % the later exercise on convolution and pooling fprintf('Saving learned features and preprocessing matrices...\n'); save('STL10Features.mat', 'optTheta', 'ZCAWhite', 'meanPatch'); fprintf('Saved\n'); %% STEP 2d: Visualize learned features W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize); b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); displayColorNetwork( (W*ZCAWhite)');
sparseAutoencoderLinearCost.mui
function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ... lambda, sparsityParam, beta, data) % -------------------- YOUR CODE HERE -------------------- % Instructions: % Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your % earlier exercise onto this file, renaming the function to % sparseAutoencoderLinearCost, and changing the autoencoder to use a % linear decoder. % visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % lambda: weight decay parameter % sparsityParam: The desired average activation for the hidden units (denoted in the lecture % notes by the greek alphabet rho, which looks like a lower-case "p"). % beta: weight of sparsity penalty term % data: Our 64x10000 matrix containing the training data. So, data(:,i) is the i-th training example. % The input theta is a vector (because minFunc expects the parameters to be a vector). % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. %將長向量轉換成每一層的權值矩陣和偏置向量值 W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize); b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end); % Cost and gradient variables (your code needs to compute these values). % Here, we initialize them to zeros. cost = 0; W1grad = zeros(size(W1)); W2grad = zeros(size(W2)); b1grad = zeros(size(b1)); b2grad = zeros(size(b2)); %% ---------- YOUR CODE HERE -------------------------------------- Jcost = 0;%直接偏差 Jweight = 0;%權值懲罰 Jsparse = 0;%稀疏性懲罰 [n m] = size(data);%m爲樣本的個數,n爲樣本的特徵數 %前向算法計算各神經網絡節點的線性組合值和active值 z2 = W1*data+repmat(b1,1,m);%注意這裏必定要將b1向量複製擴展成m列的矩陣 a2 = sigmoid(z2); z3 = W2*a2+repmat(b2,1,m); a3 = z3; %線性解碼器************ % 計算預測產生的偏差 Jcost = (0.5/m)*sum(sum((a3-data).^2)); %計算權值懲罰項 Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2))); %計算稀釋性規則項 rho = (1/m).*sum(a2,2);%求出第一個隱含層的平均值向量 Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+ ... (1-sparsityParam).*log((1-sparsityParam)./(1-rho))); %損失函數的總表達式 cost = Jcost+lambda*Jweight+beta*Jsparse; %反向算法求出每一個節點的偏差值 d3 = -(data-a3); %線性解碼器************** sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));%由於加入了稀疏規則項,因此 %計算偏導時須要引入該項 d2 = (W2'*d3+repmat(sterm,1,m)).*sigmoidInv(z2); %計算W1grad W1grad = W1grad+d2*data'; W1grad = (1/m)*W1grad+lambda*W1; %計算W2grad W2grad = W2grad+d3*a2'; W2grad = (1/m).*W2grad+lambda*W2; %計算b1grad b1grad = b1grad+sum(d2,2); b1grad = (1/m)*b1grad;%注意b的偏導是一個向量,因此這裏應該把每一行的值累加起來 %計算b2grad b2grad = b2grad+sum(d3,2); b2grad = (1/m)*b2grad; %------------------------------------------------------------------- % After computing the cost and gradient, we will convert the gradients back % to a vector format (suitable for minFunc). Specifically, we will unroll % your gradient matrices into a vector. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end %------------------------------------------------------------------- % Here's an implementation of the sigmoid function, which you may find useful % in your computation of the costs and the gradients. This inputs a (row or % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end %sigmoid函數的逆函數 function sigmInv = sigmoidInv(x) sigmInv = sigmoid(x).*(1-sigmoid(x)); end
只是對稀疏自編碼器的代碼進行了兩處稍微的改動。
結果:
學習到的特徵也放在了STL10Features.mat裏,將要在下一章的練習中用到。
PS:講義地址:
http://deeplearning.stanford.edu/wiki/index.php/Linear_Decoders
http://deeplearning.stanford.edu/wiki/index.php/Exercise:Learning_color_features_with_Sparse_Autoencoders