HashMap源碼解析(JDK1.8)

   1 package java.util;
   2 
   3 import sun.misc.SharedSecrets;
   4 
   5 import java.io.IOException;
   6 import java.io.InvalidObjectException;
   7 import java.io.Serializable;
   8 import java.lang.reflect.ParameterizedType;
   9 import java.lang.reflect.Type;
  10 import java.util.function.BiConsumer;
  11 import java.util.function.BiFunction;
  12 import java.util.function.Consumer;
  13 import java.util.function.Function;
  14 
  15 /**
  16  * HashMap是經常使用的Java集合之一,是基於哈希表的Map接口的實現。與HashTable主要區別爲不支持同步和容許null做爲key和value。
  17  * HashMap非線程安全,即任一時刻能夠有多個線程同時寫HashMap,可能會致使數據的不一致。
  18  * 若是須要知足線程安全,能夠用 Collections的synchronizedMap方法使HashMap具備線程安全的能力,或者使用ConcurrentHashMap。
  19  * 在JDK1.6中,HashMap採用數組+鏈表實現,即便用鏈表處理衝突,同一hash值的鏈表都存儲在一個鏈表裏。
  20  * 可是當位於一個數組中的元素較多,即hash值相等的元素較多時,經過key值依次查找的效率較低。
  21  * 而JDK1.8中,HashMap採用數組+鏈表+紅黑樹實現,當鏈表長度超過閾值8時,將鏈表轉換爲紅黑樹,這樣大大減小了查找時間。
  22  * 本來Map.Entry接口的實現類Entry更名爲了Node。轉化爲紅黑樹時改用另外一種實現TreeNode。
  23  */
  24 public class HashMap<K, V> extends AbstractMap<K, V>
  25         implements Map<K, V>, Cloneable, Serializable {
  26 
  27     private static final long serialVersionUID = 362498820763181265L;
  28 
  29 
  30     /**
  31      * 默認的初始容量(容量爲HashMap中槽的數目)是16,且實際容量必須是2的整數次冪。
  32      */
  33     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
  34 
  35     /**
  36      * 最大容量(必須是2的冪且小於2的30次方,傳入容量過大將被這個值替換)
  37      */
  38     static final int MAXIMUM_CAPACITY = 1 << 30;
  39 
  40     /**
  41      * 默認裝填因子0.75,若是當前鍵值對個數 >= HashMap最大容量*裝填因子,進行rehash操做
  42      */
  43     static final float DEFAULT_LOAD_FACTOR = 0.75f;
  44 
  45     /**
  46      * JDK1.8 新加,Entry鏈表最大長度,當桶中節點數目大於該長度時,將鏈表轉成紅黑樹存儲;
  47      */
  48     static final int TREEIFY_THRESHOLD = 8;
  49 
  50     /**
  51      * JDK1.8 新加,當桶中節點數小於該長度,將紅黑樹轉爲鏈表存儲;
  52      */
  53     static final int UNTREEIFY_THRESHOLD = 6;
  54 
  55     /**
  56      * 桶可能被轉化爲樹形結構的最小容量。當哈希表的大小超過這個閾值,纔會把鏈式結構轉化成樹型結構,不然僅採起擴容來嘗試減小衝突。
  57      * 應該至少4*TREEIFY_THRESHOLD來避免擴容和樹形結構化之間的衝突。
  58      */
  59     static final int MIN_TREEIFY_CAPACITY = 64;
  60 
  61     /**
  62      * JDK1.6用Entry描述鍵值對,JDK1.8中用Node代替Entry
  63      */
  64     static class Node<K, V> implements Map.Entry<K, V> {
  65         // hash存儲key的hashCode
  66         final int hash;
  67         // final:一個鍵值對的key不可改變
  68         final K key;
  69         V value;
  70         //指向下個節點的引用
  71         Node<K, V> next;
  72 
  73         //構造函數
  74         Node(int hash, K key, V value, Node<K, V> next) {
  75             this.hash = hash;
  76             this.key = key;
  77             this.value = value;
  78             this.next = next;
  79         }
  80 
  81         public final K getKey() {
  82             return key;
  83         }
  84 
  85         public final V getValue() {
  86             return value;
  87         }
  88 
  89         public final String toString() {
  90             return key + "=" + value;
  91         }
  92 
  93         public final int hashCode() {
  94             return Objects.hashCode(key) ^ Objects.hashCode(value);
  95         }
  96 
  97         public final V setValue(V newValue) {
  98             V oldValue = value;
  99             value = newValue;
 100             return oldValue;
 101         }
 102 
 103         public final boolean equals(Object o) {
 104             if (o == this)
 105                 return true;
 106             if (o instanceof Map.Entry) {
 107                 Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
 108                 if (Objects.equals(key, e.getKey()) &&
 109                         Objects.equals(value, e.getValue()))
 110                     return true;
 111             }
 112             return false;
 113         }
 114     }
 115 
 116     /* ---------------- Static utilities -------------- */
 117 
 118     /**
 119      * HashMap中鍵值對的存儲形式爲鏈表節點,hashCode相同的節點(位於同一個桶)用鏈表組織
 120      * hash方法分爲三步:
 121      * 1.取key的hashCode
 122      * 2.key的hashCode高16位異或低16位
 123      * 3.將第一步和第二步獲得的結果進行取模運算。
 124      */
 125     static final int hash(Object key) {
 126         int h;
 127         //計算key的hashCode, h = Objects.hashCode(key)
 128         //h >>> 16表示對h無符號右移16位,高位補0,而後h與h >>> 16按位異或
 129         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 130     }
 131 
 132     /**
 133      * 若是參數x實現了Comparable接口,返回參數x的類名,不然返回null
 134      */
 135     static Class<?> comparableClassFor(Object x) {
 136         if (x instanceof Comparable) {
 137             Class<?> c;
 138             Type[] ts, as;
 139             Type t;
 140             ParameterizedType p;
 141             if ((c = x.getClass()) == String.class) // bypass checks
 142                 return c;
 143             if ((ts = c.getGenericInterfaces()) != null) {
 144                 for (int i = 0; i < ts.length; ++i) {
 145                     if (((t = ts[i]) instanceof ParameterizedType) &&
 146                             ((p = (ParameterizedType) t).getRawType() ==
 147                                     Comparable.class) &&
 148                             (as = p.getActualTypeArguments()) != null &&
 149                             as.length == 1 && as[0] == c) // type arg is c
 150                         return c;
 151                 }
 152             }
 153         }
 154         return null;
 155     }
 156 
 157     /**
 158      * 若是x的類型爲kc,則返回k.compareTo(x),不然返回0
 159      */
 160     @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
 161     static int compareComparables(Class<?> kc, Object k, Object x) {
 162         return (x == null || x.getClass() != kc ? 0 :
 163                 ((Comparable) k).compareTo(x));
 164     }
 165 
 166     /**
 167      * 結果爲>=cap的最小2的天然數冪
 168      */
 169     static final int tableSizeFor(int cap) {
 170         //先移位再或運算,最終保證返回值是2的整數冪
 171         int n = cap - 1;
 172         n |= n >>> 1;
 173         n |= n >>> 2;
 174         n |= n >>> 4;
 175         n |= n >>> 8;
 176         n |= n >>> 16;
 177         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 178     }
 179 
 180     /* ---------------- Fields -------------- */
 181 
 182     /**
 183      * 哈希桶數組,分配的時候,table的長度老是2的冪
 184      */
 185     transient Node<K, V>[] table;
 186 
 187     /**
 188      * HashMap將數據轉換成set的另外一種存儲形式,這個變量主要用於迭代功能
 189      */
 190     transient Set<Map.Entry<K, V>> entrySet;
 191 
 192     /**
 193      * 實際存儲的數量,則HashMap的size()方法,實際返回的就是這個值,isEmpty()也是判斷該值是否爲0
 194      */
 195     transient int size;
 196 
 197     /**
 198      * hashmap結構被改變的次數,fail-fast機制
 199      */
 200     transient int modCount;
 201 
 202     /**
 203      * HashMap的擴容閾值,在HashMap中存儲的Node鍵值對超過這個數量時,自動擴容容量爲原來的二倍
 204      *
 205      * @serial
 206      */
 207     int threshold;
 208 
 209     /**
 210      * HashMap的負加載因子,可計算出當前table長度下的擴容閾值:threshold = loadFactor * table.length
 211      *
 212      * @serial
 213      */
 214     final float loadFactor;
 215 
 216     /* ---------------- Public operations -------------- */
 217 
 218     /**
 219      * 使用指定的初始化容量initial capacity 和加載因子load factor構造一個空HashMap
 220      *
 221      * @param initialCapacity 初始化容量
 222      * @param loadFactor      加載因子
 223      * @throws IllegalArgumentException 若是指定的初始化容量爲負數或者加載因子爲非正數
 224      */
 225     public HashMap(int initialCapacity, float loadFactor) {
 226         if (initialCapacity < 0)
 227             throw new IllegalArgumentException("Illegal initial capacity: " +
 228                     initialCapacity);
 229         if (initialCapacity > MAXIMUM_CAPACITY)
 230             initialCapacity = MAXIMUM_CAPACITY;
 231         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 232             throw new IllegalArgumentException("Illegal load factor: " +
 233                     loadFactor);
 234         this.loadFactor = loadFactor;
 235         this.threshold = tableSizeFor(initialCapacity);
 236     }
 237 
 238     /**
 239      * 使用指定的初始化容量initial capacity和默認加載因子DEFAULT_LOAD_FACTOR(0.75)構造一個空HashMap
 240      *
 241      * @param initialCapacity 初始化容量
 242      * @throws IllegalArgumentException 若是指定的初始化容量爲負數
 243      */
 244     public HashMap(int initialCapacity) {
 245         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 246     }
 247 
 248     /**
 249      * 使用指定的初始化容量(16)和默認加載因子DEFAULT_LOAD_FACTOR(0.75)構造一個空HashMap
 250      */
 251     public HashMap() {
 252         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 253     }
 254 
 255     /**
 256      * 使用指定Map m構造新的HashMap。使用指定的初始化容量(16)和默認加載因子DEFAULT_LOAD_FACTOR(0.75)
 257      *
 258      * @param m 指定的map
 259      * @throws NullPointerException 若是指定的map是null
 260      */
 261     public HashMap(Map<? extends K, ? extends V> m) {
 262         this.loadFactor = DEFAULT_LOAD_FACTOR;
 263         putMapEntries(m, false);
 264     }
 265 
 266     /**
 267      * Map.putAll and Map constructor的實現須要的方法
 268      * 將m的鍵值對插入本map中
 269      *
 270      * @param m     指定的map
 271      * @param evict 初始化map時使用false,不然使用true
 272      */
 273     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 274         int s = m.size();
 275         //若是參數map不爲空
 276         if (s > 0) {
 277             // 判斷table是否已經初始化
 278             if (table == null) { // pre-size
 279                 // 未初始化,s爲m的實際元素個數
 280                 float ft = ((float) s / loadFactor) + 1.0F;
 281                 int t = ((ft < (float) MAXIMUM_CAPACITY) ?
 282                         (int) ft : MAXIMUM_CAPACITY);
 283                 // 計算獲得的t大於閾值,則初始化閾值
 284                 if (t > threshold)
 285                     //根據容量初始化臨界值
 286                     threshold = tableSizeFor(t);
 287                 // 已初始化,而且m元素個數大於閾值,進行擴容處理
 288             } else if (s > threshold)
 289                 //擴容處理
 290                 resize();
 291             // 將m中的全部元素添加至HashMap中
 292             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 293                 K key = e.getKey();
 294                 V value = e.getValue();
 295                 putVal(hash(key), key, value, false, evict);
 296             }
 297         }
 298     }
 299 
 300     /**
 301      * 返回map中鍵值對映射的個數
 302      *
 303      * @return map中鍵值對映射的個數
 304      */
 305     public int size() {
 306         return size;
 307     }
 308 
 309     /**
 310      * 若是map中沒有鍵值對映射,返回true
 311      *
 312      * @return 若是map中沒有鍵值對映射,返回true
 313      */
 314     public boolean isEmpty() {
 315         return size == 0;
 316     }
 317 
 318     /**
 319      * 返回指定的key映射的value,若是value爲null,則返回null
 320      * get能夠分爲三個步驟:
 321      * 1.經過hash(Object key)方法計算key的哈希值hash。
 322      * 2.經過getNode( int hash, Object key)方法獲取node。
 323      * 3.若是node爲null,返回null,不然返回node.value。
 324      *
 325      * @see #put(Object, Object)
 326      */
 327     public V get(Object key) {
 328         Node<K, V> e;
 329         //根據key及其hash值查詢node節點,若是存在,則返回該節點的value值
 330         return (e = getNode(hash(key), key)) == null ? null : e.value;
 331     }
 332 
 333     /**
 334      * 根據key的哈希值和key獲取對應的節點
 335      * getNode可分爲如下幾個步驟:
 336      * 1.若是哈希表爲空,或key對應的桶爲空,返回null
 337      * 2.若是桶中的第一個節點就和指定參數hash和key匹配上了,返回這個節點。
 338      * 3.若是桶中的第一個節點沒有匹配上,並且有後續節點
 339      * 3.1若是當前的桶採用紅黑樹,則調用紅黑樹的get方法去獲取節點
 340      * 3.2若是當前的桶不採用紅黑樹,即桶中節點結構爲鏈式結構,遍歷鏈表,直到key匹配
 341      * 4.找到節點返回null,不然返回null。
 342      *
 343      * @param hash 指定參數key的哈希值
 344      * @param key  指定參數key
 345      * @return 返回node,若是沒有則返回null
 346      */
 347     final Node<K, V> getNode(int hash, Object key) {
 348         Node<K, V>[] tab;
 349         Node<K, V> first, e;
 350         int n;
 351         K k;
 352         //若是哈希表不爲空,並且key對應的桶上不爲空
 353         if ((tab = table) != null && (n = tab.length) > 0 &&
 354                 (first = tab[(n - 1) & hash]) != null) {
 355             //若是桶中的第一個節點就和指定參數hash和key匹配上了
 356             if (first.hash == hash && // always check first node
 357                     ((k = first.key) == key || (key != null && key.equals(k))))
 358                 //返回桶中的第一個節點
 359                 return first;
 360             //若是桶中的第一個節點沒有匹配上,並且有後續節點
 361             if ((e = first.next) != null) {
 362                 //若是當前的桶採用紅黑樹,則調用紅黑樹的get方法去獲取節點
 363                 if (first instanceof TreeNode)
 364                     return ((TreeNode<K, V>) first).getTreeNode(hash, key);
 365                 //若是當前的桶不採用紅黑樹,即桶中節點結構爲鏈式結構
 366                 do {
 367                     //遍歷鏈表,直到key匹配
 368                     if (e.hash == hash &&
 369                             ((k = e.key) == key || (key != null && key.equals(k))))
 370                         return e;
 371                 } while ((e = e.next) != null);
 372             }
 373         }
 374         //若是哈希表爲空,或者沒有找到節點,返回null
 375         return null;
 376     }
 377 
 378     /**
 379      * 若是map中含有key爲指定參數key的鍵值對,返回true
 380      *
 381      * @param key 指定參數key
 382      * @return 若是map中含有key爲指定參數key的鍵值對,返回true
 383      * key.
 384      */
 385     public boolean containsKey(Object key) {
 386         return getNode(hash(key), key) != null;
 387     }
 388 
 389     /**
 390      * 將指定參數key和指定參數value插入map中,若是key已經存在,那就替換key對應的value
 391      * put(K key, V value)能夠分爲三個步驟:
 392      * 1.經過hash(Object key)方法計算key的哈希值。
 393      * 2.經過putVal(hash(key), key, value, false, true)方法實現功能。
 394      * 3.返回putVal方法返回的結果。
 395      *
 396      * @param key   指定key
 397      * @param value 指定value
 398      * @return 若是value被替換,則返回舊的value,不然返回null。固然,可能key對應的value就是null
 399      */
 400     public V put(K key, V value) {
 401         // 倒數第二個參數false:表示容許舊值替換
 402         // 最後一個參數true:表示HashMap不處於建立模式
 403         return putVal(hash(key), key, value, false, true);
 404     }
 405 
 406     /**
 407      * Map.put和其餘相關方法的實現須要的方法
 408      * putVal方法能夠分爲下面的幾個步驟:
 409      * 1.若是哈希表爲空,調用resize()建立一個哈希表。
 410      * 2.若是指定參數hash在表中沒有對應的桶,即爲沒有碰撞,直接將鍵值對插入到哈希表中便可。
 411      * 3.若是有碰撞,遍歷桶,找到key映射的節點
 412      * 3.1桶中的第一個節點就匹配了,將桶中的第一個節點記錄起來。
 413      * 3.2若是桶中的第一個節點沒有匹配,且桶中結構爲紅黑樹,則調用紅黑樹對應的方法插入鍵值對。
 414      * 3.3若是不是紅黑樹,那麼就確定是鏈表。遍歷鏈表,若是找到了key映射的節點,就記錄這個節點,退出循環。若是沒有找到,在鏈表尾部插入節點。插入後,若是鏈的長度大於TREEIFY_THRESHOLD這個臨界值,則使用treeifyBin方法把鏈表轉爲紅黑樹。
 415      * 4.若是找到了key映射的節點,且節點不爲null
 416      * 4.1記錄節點的vlaue。
 417      * 4.2若是參數onlyIfAbsent爲false,或者oldValue爲null,替換value,不然不替換。
 418      * 4.3返回記錄下來的節點的value。
 419      * 5.若是沒有找到key映射的節點(二、3步中講了,這種狀況會插入到hashMap中),插入節點後size會加1,這時要檢查size是否大於臨界值threshold,若是大於會使用resize方法進行擴容。
 420      *
 421      * @param hash         指定參數key的哈希值
 422      * @param key          指定參數key
 423      * @param value        指定參數value
 424      * @param onlyIfAbsent 若是爲true,即便指定參數key在map中已經存在,也不會替換value
 425      * @param evict        若是爲false,數組table在建立模式中
 426      * @return 若是value被替換,則返回舊的value,不然返回null。固然,可能key對應的value就是null。
 427      */
 428     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 429                    boolean evict) {
 430         Node<K, V>[] tab;
 431         Node<K, V> p;
 432         int n, i;
 433         //若是哈希表爲空,調用resize()建立一個哈希表,並用變量n記錄哈希表長度
 434         if ((tab = table) == null || (n = tab.length) == 0)
 435             n = (tab = resize()).length;
 436         /**
 437          * 若是指定參數hash在表中沒有對應的桶,即爲沒有碰撞
 438          * Hash函數,(n - 1) & hash 計算key將被放置的槽位
 439          * (n - 1) & hash 本質上是hash % n,位運算更快
 440          */
 441         if ((p = tab[i = (n - 1) & hash]) == null)
 442             //直接將鍵值對插入到map中便可
 443             tab[i] = newNode(hash, key, value, null);
 444         else {// 桶中已經存在元素
 445             Node<K, V> e;
 446             K k;
 447             // 比較桶中第一個元素(數組中的結點)的hash值相等,key相等
 448             if (p.hash == hash &&
 449                     ((k = p.key) == key || (key != null && key.equals(k))))
 450                 // 將第一個元素賦值給e,用e來記錄
 451                 e = p;
 452                 // 當前桶中無該鍵值對,且桶是紅黑樹結構,按照紅黑樹結構插入
 453             else if (p instanceof TreeNode)
 454                 e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
 455                 // 當前桶中無該鍵值對,且桶是鏈表結構,按照鏈表結構插入到尾部
 456             else {
 457                 for (int binCount = 0; ; ++binCount) {
 458                     // 遍歷到鏈表尾部
 459                     if ((e = p.next) == null) {
 460                         p.next = newNode(hash, key, value, null);
 461                         // 檢查鏈表長度是否達到閾值,達到將該槽位節點組織形式轉爲紅黑樹
 462                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 463                             treeifyBin(tab, hash);
 464                         break;
 465                     }
 466                     // 鏈表節點的<key, value>與put操做<key, value>相同時,不作重複操做,跳出循環
 467                     if (e.hash == hash &&
 468                             ((k = e.key) == key || (key != null && key.equals(k))))
 469                         break;
 470                     p = e;
 471                 }
 472             }
 473             // 找到或新建一個key和hashCode與插入元素相等的鍵值對,進行put操做
 474             if (e != null) { // existing mapping for key
 475                 // 記錄e的value
 476                 V oldValue = e.value;
 477                 /**
 478                  * onlyIfAbsent爲false或舊值爲null時,容許替換舊值
 479                  * 不然無需替換
 480                  */
 481                 if (!onlyIfAbsent || oldValue == null)
 482                     e.value = value;
 483                 // 訪問後回調
 484                 afterNodeAccess(e);
 485                 // 返回舊值
 486                 return oldValue;
 487             }
 488         }
 489         // 更新結構化修改信息
 490         ++modCount;
 491         // 鍵值對數目超過閾值時,進行rehash
 492         if (++size > threshold)
 493             resize();
 494         // 插入後回調
 495         afterNodeInsertion(evict);
 496         return null;
 497     }
 498 
 499     /**
 500      * 對table進行初始化或者擴容。
 501      * 若是table爲null,則對table進行初始化
 502      * 若是對table擴容,由於每次擴容都是翻倍,與原來計算(n-1)&hash的結果相比,節點要麼就在原來的位置,要麼就被分配到「原位置+舊容量」這個位置
 503      * resize的步驟總結爲:
 504      * 1.計算擴容後的容量,臨界值。
 505      * 2.將hashMap的臨界值修改成擴容後的臨界值
 506      * 3.根據擴容後的容量新建數組,而後將hashMap的table的引用指向新數組。
 507      * 4.將舊數組的元素複製到table中。
 508      *
 509      * @return the table
 510      */
 511     final Node<K, V>[] resize() {
 512         //新建oldTab數組保存擴容前的數組table
 513         Node<K, V>[] oldTab = table;
 514         //獲取原來數組的長度
 515         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 516         //原來數組擴容的臨界值
 517         int oldThr = threshold;
 518         int newCap, newThr = 0;
 519         //若是擴容前的容量 > 0
 520         if (oldCap > 0) {
 521             //若是原來的數組長度大於最大值(2^30)
 522             if (oldCap >= MAXIMUM_CAPACITY) {
 523                 //擴容臨界值提升到正無窮
 524                 threshold = Integer.MAX_VALUE;
 525                 //沒法進行擴容,返回原來的數組
 526                 return oldTab;
 527                 //若是如今容量的兩倍小於MAXIMUM_CAPACITY且如今的容量大於DEFAULT_INITIAL_CAPACITY
 528             } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 529                     oldCap >= DEFAULT_INITIAL_CAPACITY)
 530                 //臨界值變爲原來的2倍
 531                 newThr = oldThr << 1;
 532         } else if (oldThr > 0) //若是舊容量 <= 0,並且舊臨界值 > 0
 533             //數組的新容量設置爲老數組擴容的臨界值
 534             newCap = oldThr;
 535         else { //若是舊容量 <= 0,且舊臨界值 <= 0,新容量擴充爲默認初始化容量,新臨界值爲DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY
 536             newCap = DEFAULT_INITIAL_CAPACITY;//新數組初始容量設置爲默認值
 537             newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//計算默認容量下的閾值
 538         }
 539         // 計算新的resize上限
 540         if (newThr == 0) {//在當上面的條件判斷中,只有oldThr > 0成立時,newThr == 0
 541             //ft爲臨時臨界值,下面會肯定這個臨界值是否合法,若是合法,那就是真正的臨界值
 542             float ft = (float) newCap * loadFactor;
 543             //當新容量< MAXIMUM_CAPACITY且ft < (float)MAXIMUM_CAPACITY,新的臨界值爲ft,不然爲Integer.MAX_VALUE
 544             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
 545                     (int) ft : Integer.MAX_VALUE);
 546         }
 547         //將擴容後hashMap的臨界值設置爲newThr
 548         threshold = newThr;
 549         //建立新的table,初始化容量爲newCap
 550         @SuppressWarnings({"rawtypes", "unchecked"})
 551         Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
 552         //修改hashMap的table爲新建的newTab
 553         table = newTab;
 554         //若是舊table不爲空,將舊table中的元素複製到新的table中
 555         if (oldTab != null) {
 556             //遍歷舊哈希表的每一個桶,將舊哈希表中的桶複製到新的哈希表中
 557             for (int j = 0; j < oldCap; ++j) {
 558                 Node<K, V> e;
 559                 //若是舊桶不爲null,使用e記錄舊桶
 560                 if ((e = oldTab[j]) != null) {
 561                     //將舊桶置爲null
 562                     oldTab[j] = null;
 563                     //若是舊桶中只有一個node
 564                     if (e.next == null)
 565                         //將e也就是oldTab[j]放入newTab中e.hash & (newCap - 1)的位置
 566                         newTab[e.hash & (newCap - 1)] = e;
 567                         //若是舊桶中的結構爲紅黑樹
 568                     else if (e instanceof TreeNode)
 569                         //將樹中的node分離
 570                         ((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
 571                     else {  //若是舊桶中的結構爲鏈表,鏈表重排,jdk1.8作的一系列優化
 572                         Node<K, V> loHead = null, loTail = null;
 573                         Node<K, V> hiHead = null, hiTail = null;
 574                         Node<K, V> next;
 575                         //遍歷整個鏈表中的節點
 576                         do {
 577                             next = e.next;
 578                             // 原索引
 579                             if ((e.hash & oldCap) == 0) {
 580                                 if (loTail == null)
 581                                     loHead = e;
 582                                 else
 583                                     loTail.next = e;
 584                                 loTail = e;
 585                             } else {// 原索引+oldCap
 586                                 if (hiTail == null)
 587                                     hiHead = e;
 588                                 else
 589                                     hiTail.next = e;
 590                                 hiTail = e;
 591                             }
 592                         } while ((e = next) != null);
 593                         // 原索引放到bucket裏
 594                         if (loTail != null) {
 595                             loTail.next = null;
 596                             newTab[j] = loHead;
 597                         }
 598                         // 原索引+oldCap放到bucket裏
 599                         if (hiTail != null) {
 600                             hiTail.next = null;
 601                             newTab[j + oldCap] = hiHead;
 602                         }
 603                     }
 604                 }
 605             }
 606         }
 607         return newTab;
 608     }
 609 
 610     /**
 611      * 將鏈表轉化爲紅黑樹
 612      */
 613     final void treeifyBin(Node<K, V>[] tab, int hash) {
 614         int n, index;
 615         Node<K, V> e;
 616         //若是桶數組table爲空,或者桶數組table的長度小於MIN_TREEIFY_CAPACITY,不符合轉化爲紅黑樹的條件
 617         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 618             //擴容
 619             resize();
 620             //若是符合轉化爲紅黑樹的條件,並且hash對應的桶不爲null
 621         else if ((e = tab[index = (n - 1) & hash]) != null) {
 622             // 紅黑樹的頭、尾節點
 623             TreeNode<K, V> hd = null, tl = null;
 624             //遍歷鏈表
 625             do {
 626                 //替換鏈表node爲樹node,創建雙向鏈表
 627                 TreeNode<K, V> p = replacementTreeNode(e, null);
 628                 // 肯定樹頭節點
 629                 if (tl == null)
 630                     hd = p;
 631                 else {
 632                     p.prev = tl;
 633                     tl.next = p;
 634                 }
 635                 tl = p;
 636             } while ((e = e.next) != null);
 637             //遍歷鏈表插入每一個節點到紅黑樹
 638             if ((tab[index] = hd) != null)
 639                 hd.treeify(tab);
 640         }
 641     }
 642 
 643     /**
 644      * 將參數map中的全部鍵值對映射插入到hashMap中,若是有碰撞,則覆蓋value。
 645      *
 646      * @param m 參數map
 647      * @throws NullPointerException 若是map爲null
 648      */
 649     public void putAll(Map<? extends K, ? extends V> m) {
 650         putMapEntries(m, true);
 651     }
 652 
 653     /**
 654      * 刪除hashMap中key映射的node
 655      * remove方法的實現能夠分爲三個步驟:
 656      * 1.經過 hash(Object key)方法計算key的哈希值。
 657      * 2.經過 removeNode 方法實現功能。
 658      * 3.返回被刪除的node的value。
 659      *
 660      * @param key 參數key
 661      * @return 若是沒有映射到node,返回null,不然返回對應的value
 662      */
 663     public V remove(Object key) {
 664         Node<K, V> e;
 665         //根據key來刪除node。removeNode方法的具體實如今下面
 666         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 667                 null : e.value;
 668     }
 669 
 670     /**
 671      * Map.remove和相關方法的實現須要的方法
 672      * removeNode方法的步驟總結爲:
 673      * 1.若是數組table爲空或key映射到的桶爲空,返回null。
 674      * 2.若是key映射到的桶上第一個node的就是要刪除的node,記錄下來。
 675      * 3.若是桶內不止一個node,且桶內的結構爲紅黑樹,記錄key映射到的node。
 676      * 4.桶內的結構不爲紅黑樹,那麼桶內的結構就確定爲鏈表,遍歷鏈表,找到key映射到的node,記錄下來。
 677      * 5.若是被記錄下來的node不爲null,刪除node,size-1被刪除。
 678      * 6.返回被刪除的node。
 679      *
 680      * @param hash       key的哈希值
 681      * @param key        key的哈希值
 682      * @param value      若是 matchValue 爲true,則value也做爲肯定被刪除的node的條件之一,不然忽略
 683      * @param matchValue 若是爲true,則value也做爲肯定被刪除的node的條件之一
 684      * @param movable    若是爲false,刪除node時不會刪除其餘node
 685      * @return 返回被刪除的node,若是沒有node被刪除,則返回null(針對紅黑樹的刪除方法)
 686      */
 687     final Node<K, V> removeNode(int hash, Object key, Object value,
 688                                 boolean matchValue, boolean movable) {
 689         Node<K, V>[] tab;
 690         Node<K, V> p;
 691         int n, index;
 692         //若是數組table不爲空且key映射到的桶不爲空
 693         if ((tab = table) != null && (n = tab.length) > 0 &&
 694                 (p = tab[index = (n - 1) & hash]) != null) {
 695             Node<K, V> node = null, e;
 696             K k;
 697             V v;
 698             //若是桶上第一個node的就是要刪除的node
 699             if (p.hash == hash &&
 700                     ((k = p.key) == key || (key != null && key.equals(k))))
 701                 //記錄桶上第一個node
 702                 node = p;
 703             else if ((e = p.next) != null) {//若是桶內不止一個node
 704                 //若是桶內的結構爲紅黑樹
 705                 if (p instanceof TreeNode)
 706                     //記錄key映射到的node
 707                     node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
 708                 else {//若是桶內的結構爲鏈表
 709                     do {//遍歷鏈表,找到key映射到的node
 710                         if (e.hash == hash &&
 711                                 ((k = e.key) == key ||
 712                                         (key != null && key.equals(k)))) {
 713                             //記錄key映射到的node
 714                             node = e;
 715                             break;
 716                         }
 717                         p = e;
 718                     } while ((e = e.next) != null);
 719                 }
 720             }
 721             //若是獲得的node不爲null且(matchValue爲false||node.value和參數value匹配)
 722             if (node != null && (!matchValue || (v = node.value) == value ||
 723                     (value != null && value.equals(v)))) {
 724                 //若是桶內的結構爲紅黑樹
 725                 if (node instanceof TreeNode)
 726                     //使用紅黑樹的刪除方法刪除node
 727                     ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
 728                 else if (node == p)//若是桶的第一個node的就是要刪除的node
 729                     //刪除node
 730                     tab[index] = node.next;
 731                 else//若是桶內的結構爲鏈表,使用鏈表刪除元素的方式刪除node
 732                     p.next = node.next;
 733                 ++modCount;//結構性修改次數+1
 734                 --size;//哈希表大小-1
 735                 afterNodeRemoval(node);
 736                 return node;//返回被刪除的node
 737             }
 738         }
 739         return null;//若是數組table爲空或key映射到的桶爲空,返回null。
 740     }
 741 
 742     /**
 743      * 刪除map中全部的鍵值對
 744      */
 745     public void clear() {
 746         Node<K, V>[] tab;
 747         modCount++;
 748         if ((tab = table) != null && size > 0) {
 749             size = 0;
 750             for (int i = 0; i < tab.length; ++i)
 751                 tab[i] = null;
 752         }
 753     }
 754 
 755     /**
 756      * 若是hashMap中的鍵值對有一對或多對的value爲參數value,返回true
 757      *
 758      * @param value 參數value
 759      * @return 若是hashMap中的鍵值對有一對或多對的value爲參數value,返回true
 760      */
 761     public boolean containsValue(Object value) {
 762         Node<K, V>[] tab;
 763         V v;
 764         if ((tab = table) != null && size > 0) {
 765             //遍歷數組table
 766             for (int i = 0; i < tab.length; ++i) {
 767                 //遍歷桶中的node
 768                 for (Node<K, V> e = tab[i]; e != null; e = e.next) {
 769                     if ((v = e.value) == value ||
 770                             (value != null && value.equals(v)))
 771                         return true;
 772                 }
 773             }
 774         }
 775         return false;
 776     }
 777 
 778     /**
 779      * 返回hashMap中全部key的視圖。
 780      * 改變hashMap會影響到set,反之亦然。
 781      * 若是當迭代器迭代set時,hashMap被修改(除非是迭代器本身的remove()方法),迭代器的結果是不肯定的。
 782      * set支持元素的刪除,經過Iterator.remove、Set.remove、removeAll、retainAll、clear操做刪除hashMap中對應的鍵值對。
 783      * 不支持add和addAll方法。
 784      *
 785      * @return 返回hashMap中全部key的set視圖
 786      */
 787     public Set<K> keySet() {
 788         Set<K> ks = keySet;
 789         if (ks == null) {
 790             ks = new KeySet();
 791             keySet = ks;
 792         }
 793         return ks;
 794     }
 795 
 796     /**
 797      * 內部類KeySet
 798      */
 799     final class KeySet extends AbstractSet<K> {
 800         public final int size() {
 801             return size;
 802         }
 803 
 804         public final void clear() {
 805             HashMap.this.clear();
 806         }
 807 
 808         public final Iterator<K> iterator() {
 809             return new KeyIterator();
 810         }
 811 
 812         public final boolean contains(Object o) {
 813             return containsKey(o);
 814         }
 815 
 816         public final boolean remove(Object key) {
 817             return removeNode(hash(key), key, null, false, true) != null;
 818         }
 819 
 820         public final Spliterator<K> spliterator() {
 821             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
 822         }
 823 
 824         public final void forEach(Consumer<? super K> action) {
 825             Node<K, V>[] tab;
 826             if (action == null)
 827                 throw new NullPointerException();
 828             if (size > 0 && (tab = table) != null) {
 829                 int mc = modCount;
 830                 for (int i = 0; i < tab.length; ++i) {
 831                     for (Node<K, V> e = tab[i]; e != null; e = e.next)
 832                         action.accept(e.key);
 833                 }
 834                 if (modCount != mc)
 835                     throw new ConcurrentModificationException();
 836             }
 837         }
 838     }
 839 
 840     /**
 841      * 返回hashMap中全部value的collection視圖
 842      * 改變hashMap會改變collection,反之亦然。
 843      * 若是當迭代器迭代collection時,hashMap被修改(除非是迭代器本身的remove()方法),迭代器的結果是不肯定的。
 844      * collection支持元素的刪除,經過Iterator.remove、Collection.remove、removeAll、retainAll、clear操做刪除hashMap中對應的鍵值對。
 845      * 不支持add和addAll方法。
 846      *
 847      * @return 返回hashMap中全部key的collection視圖
 848      */
 849     public Collection<V> values() {
 850         Collection<V> vs = values;
 851         if (vs == null) {
 852             vs = new Values();
 853             values = vs;
 854         }
 855         return vs;
 856     }
 857 
 858     /**
 859      * 內部類Values
 860      */
 861     final class Values extends AbstractCollection<V> {
 862         public final int size() {
 863             return size;
 864         }
 865 
 866         public final void clear() {
 867             HashMap.this.clear();
 868         }
 869 
 870         public final Iterator<V> iterator() {
 871             return new ValueIterator();
 872         }
 873 
 874         public final boolean contains(Object o) {
 875             return containsValue(o);
 876         }
 877 
 878         public final Spliterator<V> spliterator() {
 879             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
 880         }
 881 
 882         public final void forEach(Consumer<? super V> action) {
 883             Node<K, V>[] tab;
 884             if (action == null)
 885                 throw new NullPointerException();
 886             if (size > 0 && (tab = table) != null) {
 887                 int mc = modCount;
 888                 for (int i = 0; i < tab.length; ++i) {
 889                     for (Node<K, V> e = tab[i]; e != null; e = e.next)
 890                         action.accept(e.value);
 891                 }
 892                 if (modCount != mc)
 893                     throw new ConcurrentModificationException();
 894             }
 895         }
 896     }
 897 
 898     /**
 899      * 返回hashMap中全部鍵值對的set視圖
 900      * 改變hashMap會影響到set,反之亦然。
 901      * 若是當迭代器迭代set時,hashMap被修改(除非是迭代器本身的remove()方法),迭代器的結果是不肯定的。
 902      * set支持元素的刪除,經過Iterator.remove、Set.remove、removeAll、retainAll、clear操做刪除hashMap中對應的鍵值對。
 903      * 不支持add和addAll方法。
 904      *
 905      * @return 返回hashMap中全部鍵值對的set視圖
 906      */
 907     public Set<Map.Entry<K, V>> entrySet() {
 908         Set<Map.Entry<K, V>> es;
 909         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
 910     }
 911 
 912     /**
 913      * 內部類EntrySet
 914      */
 915     final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
 916         public final int size() {
 917             return size;
 918         }
 919 
 920         public final void clear() {
 921             HashMap.this.clear();
 922         }
 923 
 924         public final Iterator<Map.Entry<K, V>> iterator() {
 925             return new EntryIterator();
 926         }
 927 
 928         public final boolean contains(Object o) {
 929             if (!(o instanceof Map.Entry))
 930                 return false;
 931             Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
 932             Object key = e.getKey();
 933             Node<K, V> candidate = getNode(hash(key), key);
 934             return candidate != null && candidate.equals(e);
 935         }
 936 
 937         public final boolean remove(Object o) {
 938             if (o instanceof Map.Entry) {
 939                 Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
 940                 Object key = e.getKey();
 941                 Object value = e.getValue();
 942                 return removeNode(hash(key), key, value, true, true) != null;
 943             }
 944             return false;
 945         }
 946 
 947         public final Spliterator<Map.Entry<K, V>> spliterator() {
 948             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
 949         }
 950 
 951         public final void forEach(Consumer<? super Map.Entry<K, V>> action) {
 952             Node<K, V>[] tab;
 953             if (action == null)
 954                 throw new NullPointerException();
 955             if (size > 0 && (tab = table) != null) {
 956                 int mc = modCount;
 957                 for (int i = 0; i < tab.length; ++i) {
 958                     for (Node<K, V> e = tab[i]; e != null; e = e.next)
 959                         action.accept(e);
 960                 }
 961                 if (modCount != mc)
 962                     throw new ConcurrentModificationException();
 963             }
 964         }
 965     }
 966 
 967     // JDK8重寫的方法
 968 
 969     /**
 970      * 經過key映射到對應node,若是沒映射到則返回默認值defaultValue
 971      *
 972      * @param key
 973      * @param defaultValue
 974      * @return key映射到對應的node,若是沒映射到則返回默認值defaultValue
 975      */
 976     @Override
 977     public V getOrDefault(Object key, V defaultValue) {
 978         Node<K, V> e;
 979         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
 980     }
 981 
 982     /**
 983      * 在hashMap中插入參數key和value組成的鍵值對,若是key在hashMap中已經存在,不替換value
 984      *
 985      * @param key
 986      * @param value
 987      * @return 若是key在hashMap中不存在,返回舊value
 988      */
 989     @Override
 990     public V putIfAbsent(K key, V value) {
 991         return putVal(hash(key), key, value, true, true);
 992     }
 993 
 994     /**
 995      * 刪除hashMap中key爲參數key,value爲參數value的鍵值對。若是桶中結構爲樹,則級聯刪除
 996      *
 997      * @param key
 998      * @param value
 999      * @return 刪除成功,返回true
1000      */
1001     @Override
1002     public boolean remove(Object key, Object value) {
1003         return removeNode(hash(key), key, value, true, true) != null;
1004     }
1005 
1006     /**
1007      * 使用newValue替換key和oldValue映射到的鍵值對中的value
1008      *
1009      * @param key
1010      * @param oldValue
1011      * @param newValue
1012      * @return 替換成功,返回true
1013      */
1014     @Override
1015     public boolean replace(K key, V oldValue, V newValue) {
1016         Node<K, V> e;
1017         V v;
1018         if ((e = getNode(hash(key), key)) != null &&
1019                 ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1020             e.value = newValue;
1021             afterNodeAccess(e);
1022             return true;
1023         }
1024         return false;
1025     }
1026 
1027     /**
1028      * 使用參數value替換key映射到的鍵值對中的value
1029      *
1030      * @param key
1031      * @param value
1032      * @return 替換成功,返回true
1033      */
1034     @Override
1035     public V replace(K key, V value) {
1036         Node<K, V> e;
1037         if ((e = getNode(hash(key), key)) != null) {
1038             V oldValue = e.value;
1039             e.value = value;
1040             afterNodeAccess(e);
1041             return oldValue;
1042         }
1043         return null;
1044     }
1045 
1046     @Override
1047     public V computeIfAbsent(K key,
1048                              Function<? super K, ? extends V> mappingFunction) {
1049         if (mappingFunction == null)
1050             throw new NullPointerException();
1051         int hash = hash(key);
1052         Node<K, V>[] tab;
1053         Node<K, V> first;
1054         int n, i;
1055         int binCount = 0;
1056         TreeNode<K, V> t = null;
1057         Node<K, V> old = null;
1058         if (size > threshold || (tab = table) == null ||
1059                 (n = tab.length) == 0)
1060             n = (tab = resize()).length;
1061         if ((first = tab[i = (n - 1) & hash]) != null) {
1062             if (first instanceof TreeNode)
1063                 old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
1064             else {
1065                 Node<K, V> e = first;
1066                 K k;
1067                 do {
1068                     if (e.hash == hash &&
1069                             ((k = e.key) == key || (key != null && key.equals(k)))) {
1070                         old = e;
1071                         break;
1072                     }
1073                     ++binCount;
1074                 } while ((e = e.next) != null);
1075             }
1076             V oldValue;
1077             if (old != null && (oldValue = old.value) != null) {
1078                 afterNodeAccess(old);
1079                 return oldValue;
1080             }
1081         }
1082         V v = mappingFunction.apply(key);
1083         if (v == null) {
1084             return null;
1085         } else if (old != null) {
1086             old.value = v;
1087             afterNodeAccess(old);
1088             return v;
1089         } else if (t != null)
1090             t.putTreeVal(this, tab, hash, key, v);
1091         else {
1092             tab[i] = newNode(hash, key, v, first);
1093             if (binCount >= TREEIFY_THRESHOLD - 1)
1094                 treeifyBin(tab, hash);
1095         }
1096         ++modCount;
1097         ++size;
1098         afterNodeInsertion(true);
1099         return v;
1100     }
1101 
1102     public V computeIfPresent(K key,
1103                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1104         if (remappingFunction == null)
1105             throw new NullPointerException();
1106         Node<K, V> e;
1107         V oldValue;
1108         int hash = hash(key);
1109         if ((e = getNode(hash, key)) != null &&
1110                 (oldValue = e.value) != null) {
1111             V v = remappingFunction.apply(key, oldValue);
1112             if (v != null) {
1113                 e.value = v;
1114                 afterNodeAccess(e);
1115                 return v;
1116             } else
1117                 removeNode(hash, key, null, false, true);
1118         }
1119         return null;
1120     }
1121 
1122     @Override
1123     public V compute(K key,
1124                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1125         if (remappingFunction == null)
1126             throw new NullPointerException();
1127         int hash = hash(key);
1128         Node<K, V>[] tab;
1129         Node<K, V> first;
1130         int n, i;
1131         int binCount = 0;
1132         TreeNode<K, V> t = null;
1133         Node<K, V> old = null;
1134         if (size > threshold || (tab = table) == null ||
1135                 (n = tab.length) == 0)
1136             n = (tab = resize()).length;
1137         if ((first = tab[i = (n - 1) & hash]) != null) {
1138             if (first instanceof TreeNode)
1139                 old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
1140             else {
1141                 Node<K, V> e = first;
1142                 K k;
1143                 do {
1144                     if (e.hash == hash &&
1145                             ((k = e.key) == key || (key != null && key.equals(k)))) {
1146                         old = e;
1147                         break;
1148                     }
1149                     ++binCount;
1150                 } while ((e = e.next) != null);
1151             }
1152         }
1153         V oldValue = (old == null) ? null : old.value;
1154         V v = remappingFunction.apply(key, oldValue);
1155         if (old != null) {
1156             if (v != null) {
1157                 old.value = v;
1158                 afterNodeAccess(old);
1159             } else
1160                 removeNode(hash, key, null, false, true);
1161         } else if (v != null) {
1162             if (t != null)
1163                 t.putTreeVal(this, tab, hash, key, v);
1164             else {
1165                 tab[i] = newNode(hash, key, v, first);
1166                 if (binCount >= TREEIFY_THRESHOLD - 1)
1167                     treeifyBin(tab, hash);
1168             }
1169             ++modCount;
1170             ++size;
1171             afterNodeInsertion(true);
1172         }
1173         return v;
1174     }
1175 
1176     @Override
1177     public V merge(K key, V value,
1178                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1179         if (value == null)
1180             throw new NullPointerException();
1181         if (remappingFunction == null)
1182             throw new NullPointerException();
1183         int hash = hash(key);
1184         Node<K, V>[] tab;
1185         Node<K, V> first;
1186         int n, i;
1187         int binCount = 0;
1188         TreeNode<K, V> t = null;
1189         Node<K, V> old = null;
1190         if (size > threshold || (tab = table) == null ||
1191                 (n = tab.length) == 0)
1192             n = (tab = resize()).length;
1193         if ((first = tab[i = (n - 1) & hash]) != null) {
1194             if (first instanceof TreeNode)
1195                 old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
1196             else {
1197                 Node<K, V> e = first;
1198                 K k;
1199                 do {
1200                     if (e.hash == hash &&
1201                             ((k = e.key) == key || (key != null && key.equals(k)))) {
1202                         old = e;
1203                         break;
1204                     }
1205                     ++binCount;
1206                 } while ((e = e.next) != null);
1207             }
1208         }
1209         if (old != null) {
1210             V v;
1211             if (old.value != null)
1212                 v = remappingFunction.apply(old.value, value);
1213             else
1214                 v = value;
1215             if (v != null) {
1216                 old.value = v;
1217                 afterNodeAccess(old);
1218             } else
1219                 removeNode(hash, key, null, false, true);
1220             return v;
1221         }
1222         if (value != null) {
1223             if (t != null)
1224                 t.putTreeVal(this, tab, hash, key, value);
1225             else {
1226                 tab[i] = newNode(hash, key, value, first);
1227                 if (binCount >= TREEIFY_THRESHOLD - 1)
1228                     treeifyBin(tab, hash);
1229             }
1230             ++modCount;
1231             ++size;
1232             afterNodeInsertion(true);
1233         }
1234         return value;
1235     }
1236 
1237     @Override
1238     public void forEach(BiConsumer<? super K, ? super V> action) {
1239         Node<K, V>[] tab;
1240         if (action == null)
1241             throw new NullPointerException();
1242         if (size > 0 && (tab = table) != null) {
1243             int mc = modCount;
1244             for (int i = 0; i < tab.length; ++i) {
1245                 for (Node<K, V> e = tab[i]; e != null; e = e.next)
1246                     action.accept(e.key, e.value);
1247             }
1248             if (modCount != mc)
1249                 throw new ConcurrentModificationException();
1250         }
1251     }
1252 
1253     @Override
1254     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1255         Node<K, V>[] tab;
1256         if (function == null)
1257             throw new NullPointerException();
1258         if (size > 0 && (tab = table) != null) {
1259             int mc = modCount;
1260             for (int i = 0; i < tab.length; ++i) {
1261                 for (Node<K, V> e = tab[i]; e != null; e = e.next) {
1262                     e.value = function.apply(e.key, e.value);
1263                 }
1264             }
1265             if (modCount != mc)
1266                 throw new ConcurrentModificationException();
1267         }
1268     }
1269 
1270     /* ------------------------------------------------------------ */
1271     // 克隆和序列化
1272 
1273     /**
1274      * 淺拷貝。
1275      * clone方法雖然生成了新的HashMap對象,新的HashMap中的table數組雖然也是新生成的,可是數組中的元素仍是引用之前的HashMap中的元素。
1276      * 這就致使在對HashMap中的元素進行修改的時候,即對數組中元素進行修改,會致使原對象和clone對象都發生改變,但進行新增或刪除就不會影響對方,由於這至關因而對數組作出的改變,clone對象新生成了一個數組。
1277      *
1278      * @return hashMap的淺拷貝
1279      */
1280     @SuppressWarnings("unchecked")
1281     @Override
1282     public Object clone() {
1283         HashMap<K, V> result;
1284         try {
1285             result = (HashMap<K, V>) super.clone();
1286         } catch (CloneNotSupportedException e) {
1287             // this shouldn't happen, since we are Cloneable
1288             throw new InternalError(e);
1289         }
1290         result.reinitialize();
1291         result.putMapEntries(this, false);
1292         return result;
1293     }
1294 
1295     // These methods are also used when serializing HashSets
1296     final float loadFactor() {
1297         return loadFactor;
1298     }
1299 
1300     final int capacity() {
1301         return (table != null) ? table.length :
1302                 (threshold > 0) ? threshold :
1303                         DEFAULT_INITIAL_CAPACITY;
1304     }
1305 
1306     /**
1307      * 序列化hashMap到ObjectOutputStream中
1308      * 將hashMap的總容量capacity、實際容量size、鍵值對映射寫入到ObjectOutputStream中。鍵值對映射序列化時是無序的。
1309      *
1310      * @serialData The <i>capacity</i> of the HashMap (the length of the
1311      * bucket array) is emitted (int), followed by the
1312      * <i>size</i> (an int, the number of key-value
1313      * mappings), followed by the key (Object) and value (Object)
1314      * for each key-value mapping.  The key-value mappings are
1315      * emitted in no particular order.
1316      */
1317     private void writeObject(java.io.ObjectOutputStream s)
1318             throws IOException {
1319         int buckets = capacity();
1320         // Write out the threshold, loadfactor, and any hidden stuff
1321         s.defaultWriteObject();
1322         //寫入總容量
1323         s.writeInt(buckets);
1324         //寫入實際容量
1325         s.writeInt(size);
1326         //寫入鍵值對
1327         internalWriteEntries(s);
1328     }
1329 
1330     /**
1331      * 到ObjectOutputStream中讀取hashMap
1332      * 將hashMap的總容量capacity、實際容量size、鍵值對映射讀取出來
1333      */
1334     private void readObject(java.io.ObjectInputStream s)
1335             throws IOException, ClassNotFoundException {
1336         // 將hashMap的總容量capacity、實際容量size、鍵值對映射讀取出來
1337         s.defaultReadObject();
1338         //重置hashMap
1339         reinitialize();
1340         //若是加載因子不合法,拋出異常
1341         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1342             throw new InvalidObjectException("Illegal load factor: " +
1343                     loadFactor);
1344         s.readInt();                //讀出桶的數量,忽略
1345         int mappings = s.readInt(); //讀出實際容量size
1346         //若是讀出的實際容量size小於0,拋出異常
1347         if (mappings < 0)
1348             throw new InvalidObjectException("Illegal mappings count: " +
1349                     mappings);
1350         else if (mappings > 0) { // (if zero, use defaults)
1351             // Size the table using given load factor only if within
1352             // range of 0.25...4.0
1353             //調整hashMap大小
1354             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);            // 加載因子
1355             float fc = (float) mappings / lf + 1.0f;         //初步獲得的總容量,後續還會處理
1356             //處理初步獲得的容量,確認最終的總容量
1357             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1358                     DEFAULT_INITIAL_CAPACITY :
1359                     (fc >= MAXIMUM_CAPACITY) ?
1360                             MAXIMUM_CAPACITY :
1361                             tableSizeFor((int) fc));
1362             //計算臨界值,獲得初步的臨界值
1363             float ft = (float) cap * lf;
1364             //獲得最終的臨界值
1365             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1366                     (int) ft : Integer.MAX_VALUE);
1367 
1368             // Check Map.Entry[].class since it's the nearest public type to
1369             // what we're actually creating.
1370             SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
1371             //新建桶數組table
1372             @SuppressWarnings({"rawtypes", "unchecked"})
1373             Node<K, V>[] tab = (Node<K, V>[]) new Node[cap];
1374             table = tab;
1375 
1376             // 讀出key和value,並組成鍵值對插入hashMap中
1377             for (int i = 0; i < mappings; i++) {
1378                 @SuppressWarnings("unchecked")
1379                 K key = (K) s.readObject();
1380                 @SuppressWarnings("unchecked")
1381                 V value = (V) s.readObject();
1382                 putVal(hash(key), key, value, false, false);
1383             }
1384         }
1385     }
1386 
1387     /* ------------------------------------------------------------ */
1388     // iterators
1389 
1390     abstract class HashIterator {
1391         Node<K, V> next;        // next entry to return
1392         Node<K, V> current;     // current entry
1393         int expectedModCount;  // for fast-fail
1394         int index;             // current slot
1395 
1396         HashIterator() {
1397             expectedModCount = modCount;
1398             Node<K, V>[] t = table;
1399             current = next = null;
1400             index = 0;
1401             if (t != null && size > 0) { // advance to first entry
1402                 do {
1403                 } while (index < t.length && (next = t[index++]) == null);
1404             }
1405         }
1406 
1407         public final boolean hasNext() {
1408             return next != null;
1409         }
1410 
1411         final Node<K, V> nextNode() {
1412             Node<K, V>[] t;
1413             Node<K, V> e = next;
1414             if (modCount != expectedModCount)
1415                 throw new ConcurrentModificationException();
1416             if (e == null)
1417                 throw new NoSuchElementException();
1418             if ((next = (current = e).next) == null && (t = table) != null) {
1419                 do {
1420                 } while (index < t.length && (next = t[index++]) == null);
1421             }
1422             return e;
1423         }
1424 
1425         public final void remove() {
1426             Node<K, V> p = current;
1427             if (p == null)
1428                 throw new IllegalStateException();
1429             if (modCount != expectedModCount)
1430                 throw new ConcurrentModificationException();
1431             current = null;
1432             K key = p.key;
1433             removeNode(hash(key), key, null, false, false);
1434             expectedModCount = modCount;
1435         }
1436     }
1437 
1438     final class KeyIterator extends HashIterator
1439             implements Iterator<K> {
1440         public final K next() {
1441             return nextNode().key;
1442         }
1443     }
1444 
1445     final class ValueIterator extends HashIterator
1446             implements Iterator<V> {
1447         public final V next() {
1448             return nextNode().value;
1449         }
1450     }
1451 
1452     final class EntryIterator extends HashIterator
1453             implements Iterator<Map.Entry<K, V>> {
1454         public final Map.Entry<K, V> next() {
1455             return nextNode();
1456         }
1457     }
1458 
1459     /* ------------------------------------------------------------ */
1460     // spliterators
1461 
1462     static class HashMapSpliterator<K, V> {
1463         final HashMap<K, V> map;
1464         Node<K, V> current;          //記錄當前的節點
1465         int index;                  //當前節點的下標
1466         int fence;                  //堆大小
1467         int est;                    //估計大小
1468         int expectedModCount;       // for comodification checks
1469 
1470         HashMapSpliterator(HashMap<K, V> m, int origin,
1471                            int fence, int est,
1472                            int expectedModCount) {
1473             this.map = m;
1474             this.index = origin;
1475             this.fence = fence;
1476             this.est = est;
1477             this.expectedModCount = expectedModCount;
1478         }
1479 
1480         final int getFence() { // initialize fence and size on first use
1481             int hi;
1482             if ((hi = fence) < 0) {
1483                 HashMap<K, V> m = map;
1484                 est = m.size;
1485                 expectedModCount = m.modCount;
1486                 Node<K, V>[] tab = m.table;
1487                 hi = fence = (tab == null) ? 0 : tab.length;
1488             }
1489             return hi;
1490         }
1491 
1492         public final long estimateSize() {
1493             getFence(); // force init
1494             return (long) est;
1495         }
1496     }
1497 
1498     static final class KeySpliterator<K, V>
1499             extends HashMapSpliterator<K, V>
1500             implements Spliterator<K> {
1501         KeySpliterator(HashMap<K, V> m, int origin, int fence, int est,
1502                        int expectedModCount) {
1503             super(m, origin, fence, est, expectedModCount);
1504         }
1505 
1506         public KeySpliterator<K, V> trySplit() {
1507             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1508             return (lo >= mid || current != null) ? null :
1509                     new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1510                             expectedModCount);
1511         }
1512 
1513         public void forEachRemaining(Consumer<? super K> action) {
1514             int i, hi, mc;
1515             if (action == null)
1516                 throw new NullPointerException();
1517             HashMap<K, V> m = map;
1518             Node<K, V>[] tab = m.table;
1519             if ((hi = fence) < 0) {
1520                 mc = expectedModCount = m.modCount;
1521                 hi = fence = (tab == null) ? 0 : tab.length;
1522             } else
1523                 mc = expectedModCount;
1524             if (tab != null && tab.length >= hi &&
1525                     (i = index) >= 0 && (i < (index = hi) || current != null)) {
1526                 Node<K, V> p = current;
1527                 current = null;
1528                 do {
1529                     if (p == null)
1530                         p = tab[i++];
1531                     else {
1532                         action.accept(p.key);
1533                         p = p.next;
1534                     }
1535                 } while (p != null || i < hi);
1536                 if (m.modCount != mc)
1537                     throw new ConcurrentModificationException();
1538             }
1539         }
1540 
1541         public boolean tryAdvance(Consumer<? super K> action) {
1542             int hi;
1543             if (action == null)
1544                 throw new NullPointerException();
1545             Node<K, V>[] tab = map.table;
1546             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1547                 while (current != null || index < hi) {
1548                     if (current == null)
1549                         current = tab[index++];
1550                     else {
1551                         K k = current.key;
1552                         current = current.next;
1553                         action.accept(k);
1554                         if (map.modCount != expectedModCount)
1555                             throw new ConcurrentModificationException();
1556                         return true;
1557                     }
1558                 }
1559             }
1560             return false;
1561         }
1562 
1563         public int characteristics() {
1564             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1565                     Spliterator.DISTINCT;
1566         }
1567     }
1568 
1569     static final class ValueSpliterator<K, V>
1570             extends HashMapSpliterator<K, V>
1571             implements Spliterator<V> {
1572         ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est,
1573                          int expectedModCount) {
1574             super(m, origin, fence, est, expectedModCount);
1575         }
1576 
1577         public ValueSpliterator<K, V> trySplit() {
1578             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1579             return (lo >= mid || current != null) ? null :
1580                     new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1581                             expectedModCount);
1582         }
1583 
1584         public void forEachRemaining(Consumer<? super V> action) {
1585             int i, hi, mc;
1586             if (action == null)
1587                 throw new NullPointerException();
1588             HashMap<K, V> m = map;
1589             Node<K, V>[] tab = m.table;
1590             if ((hi = fence) < 0) {
1591                 mc = expectedModCount = m.modCount;
1592                 hi = fence = (tab == null) ? 0 : tab.length;
1593             } else
1594                 mc = expectedModCount;
1595             if (tab != null && tab.length >= hi &&
1596                     (i = index) >= 0 && (i < (index = hi) || current != null)) {
1597                 Node<K, V> p = current;
1598                 current = null;
1599                 do {
1600                     if (p == null)
1601                         p = tab[i++];
1602                     else {
1603                         action.accept(p.value);
1604                         p = p.next;
1605                     }
1606                 } while (p != null || i < hi);
1607                 if (m.modCount != mc)
1608                     throw new ConcurrentModificationException();
1609             }
1610         }
1611 
1612         public boolean tryAdvance(Consumer<? super V> action) {
1613             int hi;
1614             if (action == null)
1615                 throw new NullPointerException();
1616             Node<K, V>[] tab = map.table;
1617             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1618                 while (current != null || index < hi) {
1619                     if (current == null)
1620                         current = tab[index++];
1621                     else {
1622                         V v = current.value;
1623                         current = current.next;
1624                         action.accept(v);
1625                         if (map.modCount != expectedModCount)
1626                             throw new ConcurrentModificationException();
1627                         return true;
1628                     }
1629                 }
1630             }
1631             return false;
1632         }
1633 
1634         public int characteristics() {
1635             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1636         }
1637     }
1638 
1639     static final class EntrySpliterator<K, V>
1640             extends HashMapSpliterator<K, V>
1641             implements Spliterator<Map.Entry<K, V>> {
1642         EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est,
1643                          int expectedModCount) {
1644             super(m, origin, fence, est, expectedModCount);
1645         }
1646 
1647         public EntrySpliterator<K, V> trySplit() {
1648             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1649             return (lo >= mid || current != null) ? null :
1650                     new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1651                             expectedModCount);
1652         }
1653 
1654         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1655             int i, hi, mc;
1656             if (action == null)
1657                 throw new NullPointerException();
1658             HashMap<K, V> m = map;
1659             Node<K, V>[] tab = m.table;
1660             if ((hi = fence) < 0) {
1661                 mc = expectedModCount = m.modCount;
1662                 hi = fence = (tab == null) ? 0 : tab.length;
1663             } else
1664                 mc = expectedModCount;
1665             if (tab != null && tab.length >= hi &&
1666                     (i = index) >= 0 && (i < (index = hi) || current != null)) {
1667                 Node<K, V> p = current;
1668                 current = null;
1669                 do {
1670                     if (p == null)
1671                         p = tab[i++];
1672                     else {
1673                         action.accept(p);
1674                         p = p.next;
1675                     }
1676                 } while (p != null || i < hi);
1677                 if (m.modCount != mc)
1678                     throw new ConcurrentModificationException();
1679             }
1680         }
1681 
1682         public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
1683             int hi;
1684             if (action == null)
1685                 throw new NullPointerException();
1686             Node<K, V>[] tab = map.table;
1687             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1688                 while (current != null || index < hi) {
1689                     if (current == null)
1690                         current = tab[index++];
1691                     else {
1692                         Node<K, V> e = current;
1693                         current = current.next;
1694                         action.accept(e);
1695                         if (map.modCount != expectedModCount)
1696                             throw new ConcurrentModificationException();
1697                         return true;
1698                     }
1699                 }
1700             }
1701             return false;
1702         }
1703 
1704         public int characteristics() {
1705             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1706                     Spliterator.DISTINCT;
1707         }
1708     }
1709 
1710     /* ------------------------------------------------------------ */
1711     // LinkedHashMap support
1712 
1713 
1714     /*
1715      * The following package-protected methods are designed to be
1716      * overridden by LinkedHashMap, but not by any other subclass.
1717      * Nearly all other internal methods are also package-protected
1718      * but are declared final, so can be used by LinkedHashMap, view
1719      * classes, and HashSet.
1720      */
1721 
1722     // 建立一個鏈表結點
1723     Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
1724         return new Node<>(hash, key, value, next);
1725     }
1726 
1727     // 替換一個鏈表節點
1728     Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {
1729         return new Node<>(p.hash, p.key, p.value, next);
1730     }
1731 
1732     // 建立一個紅黑樹節點
1733     TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {
1734         return new TreeNode<>(hash, key, value, next);
1735     }
1736 
1737     // 替換一個紅黑樹節點
1738     TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {
1739         return new TreeNode<>(p.hash, p.key, p.value, next);
1740     }
1741 
1742     /**
1743      * Reset to initial default state.  Called by clone and readObject.
1744      */
1745     void reinitialize() {
1746         table = null;
1747         entrySet = null;
1748         keySet = null;
1749         values = null;
1750         modCount = 0;
1751         threshold = 0;
1752         size = 0;
1753     }
1754 
1755     // Callbacks to allow LinkedHashMap post-actions
1756     void afterNodeAccess(Node<K, V> p) {
1757     }
1758 
1759     void afterNodeInsertion(boolean evict) {
1760     }
1761 
1762     void afterNodeRemoval(Node<K, V> p) {
1763     }
1764 
1765     // 寫入hashMap鍵值對到ObjectOutputStream中
1766     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1767         Node<K, V>[] tab;
1768         if (size > 0 && (tab = table) != null) {
1769             for (int i = 0; i < tab.length; ++i) {
1770                 for (Node<K, V> e = tab[i]; e != null; e = e.next) {
1771                     s.writeObject(e.key);
1772                     s.writeObject(e.value);
1773                 }
1774             }
1775         }
1776     }
1777 
1778     /* ------------------------------------------------------------ */
1779     // Tree bins
1780 
1781     /**
1782      * JDK1.8新增,用來支持桶的紅黑樹結構實現
1783      * 性質1. 節點是紅色或黑色。
1784      * 性質2. 根是黑色。
1785      * 性質3. 全部葉子都是黑色(葉子是NIL節點)。
1786      * 性質4. 每一個紅色節點必須有兩個黑色的子節點。(從每一個葉子到根的全部路徑上不能有兩個連續的紅色節點。)
1787      * 性質5. 從任一節點到其每一個葉子的全部簡單路徑都包含相同數目的黑色節點。
1788      */
1789 
1790     static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> {
1791         TreeNode<K, V> parent;  //節點的父親
1792         TreeNode<K, V> left;    //節點的左孩子
1793         TreeNode<K, V> right;   //節點的右孩子
1794         TreeNode<K, V> prev;    //節點的前一個節點
1795         boolean red;            //true表示紅節點,false表示黑節點
1796 
1797         TreeNode(int hash, K key, V val, Node<K, V> next) {
1798             super(hash, key, val, next);
1799         }
1800 
1801         /**
1802          * 獲取紅黑樹的根
1803          */
1804         final TreeNode<K, V> root() {
1805             for (TreeNode<K, V> r = this, p; ; ) {
1806                 if ((p = r.parent) == null)
1807                     return r;
1808                 r = p;
1809             }
1810         }
1811 
1812         /**
1813          * 確保root是桶中的第一個元素 ,將root移到中中的第一個
1814          */
1815         static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
1816             int n;
1817             if (root != null && tab != null && (n = tab.length) > 0) {
1818                 int index = (n - 1) & root.hash;
1819                 TreeNode<K, V> first = (TreeNode<K, V>) tab[index];
1820                 if (root != first) {
1821                     Node<K, V> rn;
1822                     tab[index] = root;
1823                     TreeNode<K, V> rp = root.prev;
1824                     if ((rn = root.next) != null)
1825                         ((TreeNode<K, V>) rn).prev = rp;
1826                     if (rp != null)
1827                         rp.next = rn;
1828                     if (first != null)
1829                         first.prev = root;
1830                     root.next = first;
1831                     root.prev = null;
1832                 }
1833                 assert checkInvariants(root);
1834             }
1835         }
1836 
1837         /**
1838          * 查找hash爲h,key爲k的節點
1839          */
1840         final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
1841             TreeNode<K, V> p = this;
1842             do {
1843                 int ph, dir;
1844                 K pk;
1845                 TreeNode<K, V> pl = p.left, pr = p.right, q;
1846                 if ((ph = p.hash) > h)
1847                     p = pl;
1848                 else if (ph < h)
1849                     p = pr;
1850                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1851                     return p;
1852                 else if (pl == null)
1853                     p = pr;
1854                 else if (pr == null)
1855                     p = pl;
1856                 else if ((kc != null ||
1857                         (kc = comparableClassFor(k)) != null) &&
1858                         (dir = compareComparables(kc, k, pk)) != 0)
1859                     p = (dir < 0) ? pl : pr;
1860                 else if ((q = pr.find(h, k, kc)) != null)
1861                     return q;
1862                 else
1863                     p = pl;
1864             } while (p != null);
1865             return null;
1866         }
1867 
1868         /**
1869          * 獲取樹節點,經過根節點查找
1870          */
1871         final TreeNode<K, V> getTreeNode(int h, Object k) {
1872             return ((parent != null) ? root() : this).find(h, k, null);
1873         }
1874 
1875         /**
1876          * 比較2個對象的大小
1877          */
1878         static int tieBreakOrder(Object a, Object b) {
1879             int d;
1880             if (a == null || b == null ||
1881                     (d = a.getClass().getName().
1882                             compareTo(b.getClass().getName())) == 0)
1883                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1884                         -1 : 1);
1885             return d;
1886         }
1887 
1888         /**
1889          * 將鏈表轉爲二叉樹
1890          *
1891          * @return root of tree
1892          */
1893         final void treeify(Node<K, V>[] tab) {
1894             TreeNode<K, V> root = null;
1895             for (TreeNode<K, V> x = this, next; x != null; x = next) {
1896                 next = (TreeNode<K, V>) x.next;
1897                 x.left = x.right = null;
1898                 if (root == null) {
1899                     x.parent = null;
1900                     x.red = false;
1901                     root = x;
1902                 } else {
1903                     K k = x.key;
1904                     int h = x.hash;
1905                     Class<?> kc = null;
1906                     for (TreeNode<K, V> p = root; ; ) {
1907                         int dir, ph;
1908                         K pk = p.key;
1909                         if ((ph = p.hash) > h)
1910                             dir = -1;
1911                         else if (ph < h)
1912                             dir = 1;
1913                         else if ((kc == null &&
1914                                 (kc = comparableClassFor(k)) == null) ||
1915                                 (dir = compareComparables(kc, k, pk)) == 0)
1916                             dir = tieBreakOrder(k, pk);
1917 
1918                         TreeNode<K, V> xp = p;
1919                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
1920                             x.parent = xp;
1921                             if (dir <= 0)
1922                                 xp.left = x;
1923                             else
1924                                 xp.right = x;
1925                             root = balanceInsertion(root, x);
1926                             break;
1927                         }
1928                     }
1929                 }
1930             }
1931             moveRootToFront(tab, root);
1932         }
1933 
1934         /**
1935          * 將二叉樹轉爲鏈表
1936          */
1937         final Node<K, V> untreeify(HashMap<K, V> map) {
1938             Node<K, V> hd = null, tl = null;
1939             for (Node<K, V> q = this; q != null; q = q.next) {
1940                 Node<K, V> p = map.replacementNode(q, null);
1941                 if (tl == null)
1942                     hd = p;
1943                 else
1944                     tl.next = p;
1945                 tl = p;
1946             }
1947             return hd;
1948         }
1949 
1950         /**
1951          * 添加一個鍵值對
1952          */
1953         final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab,
1954                                         int h, K k, V v) {
1955             Class<?> kc = null;
1956             boolean searched = false;
1957             TreeNode<K, V> root = (parent != null) ? root() : this;
1958             for (TreeNode<K, V> p = root; ; ) {
1959                 int dir, ph;
1960                 K pk;
1961                 if ((ph = p.hash) > h)
1962                     dir = -1;
1963                 else if (ph < h)
1964                     dir = 1;
1965                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1966                     return p;
1967                 else if ((kc == null &&
1968                         (kc = comparableClassFor(k)) == null) ||
1969                         (dir = compareComparables(kc, k, pk)) == 0) {
1970                     if (!searched) {
1971                         TreeNode<K, V> q, ch;
1972                         searched = true;
1973                         if (((ch = p.left) != null &&
1974                                 (q = ch.find(h, k, kc)) != null) ||
1975                                 ((ch = p.right) != null &&
1976                                         (q = ch.find(h, k, kc)) != null))
1977                             return q;
1978                     }
1979                     dir = tieBreakOrder(k, pk);
1980                 }
1981 
1982                 TreeNode<K, V> xp = p;
1983                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
1984                     Node<K, V> xpn = xp.next;
1985                     TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
1986                     if (dir <= 0)
1987                         xp.left = x;
1988                     else
1989                         xp.right = x;
1990                     xp.next = x;
1991                     x.parent = x.prev = xp;
1992                     if (xpn != null)
1993                         ((TreeNode<K, V>) xpn).prev = x;
1994                     moveRootToFront(tab, balanceInsertion(root, x));
1995                     return null;
1996                 }
1997             }
1998         }
1999 
2000         /**
2001          * Removes the given node, that must be present before this call.
2002          * This is messier than typical red-black deletion code because we
2003          * cannot swap the contents of an interior node with a leaf
2004          * successor that is pinned by "next" pointers that are accessible
2005          * independently during traversal. So instead we swap the tree
2006          * linkages. If the current tree appears to have too few nodes,
2007          * the bin is converted back to a plain bin. (The test triggers
2008          * somewhere between 2 and 6 nodes, depending on tree structure).
2009          */
2010         final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab,
2011                                   boolean movable) {
2012             int n;
2013             if (tab == null || (n = tab.length) == 0)
2014                 return;
2015             int index = (n - 1) & hash;
2016             TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
2017             TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
2018             if (pred == null)
2019                 tab[index] = first = succ;
2020             else
2021                 pred.next = succ;
2022             if (succ != null)
2023                 succ.prev = pred;
2024             if (first == null)
2025                 return;
2026             if (root.parent != null)
2027                 root = root.root();
2028             if (root == null || root.right == null ||
2029                     (rl = root.left) == null || rl.left == null) {
2030                 tab[index] = first.untreeify(map);  // too small
2031                 return;
2032             }
2033             TreeNode<K, V> p = this, pl = left, pr = right, replacement;
2034             if (pl != null && pr != null) {
2035                 TreeNode<K, V> s = pr, sl;
2036                 while ((sl = s.left) != null) // find successor
2037                     s = sl;
2038                 boolean c = s.red;
2039                 s.red = p.red;
2040                 p.red = c; // swap colors
2041                 TreeNode<K, V> sr = s.right;
2042                 TreeNode<K, V> pp = p.parent;
2043                 if (s == pr) { // p was s's direct parent
2044                     p.parent = s;
2045                     s.right = p;
2046                 } else {
2047                     TreeNode<K, V> sp = s.parent;
2048                     if ((p.parent = sp) != null) {
2049                         if (s == sp.left)
2050                             sp.left = p;
2051                         else
2052                             sp.right = p;
2053                     }
2054                     if ((s.right = pr) != null)
2055                         pr.parent = s;
2056                 }
2057                 p.left = null;
2058                 if ((p.right = sr) != null)
2059                     sr.parent = p;
2060                 if ((s.left = pl) != null)
2061                     pl.parent = s;
2062                 if ((s.parent = pp) == null)
2063                     root = s;
2064                 else if (p == pp.left)
2065                     pp.left = s;
2066                 else
2067                     pp.right = s;
2068                 if (sr != null)
2069                     replacement = sr;
2070                 else
2071                     replacement = p;
2072             } else if (pl != null)
2073                 replacement = pl;
2074             else if (pr != null)
2075                 replacement = pr;
2076             else
2077                 replacement = p;
2078             if (replacement != p) {
2079                 TreeNode<K, V> pp = replacement.parent = p.parent;
2080                 if (pp == null)
2081                     root = replacement;
2082                 else if (p == pp.left)
2083                     pp.left = replacement;
2084                 else
2085                     pp.right = replacement;
2086                 p.left = p.right = p.parent = null;
2087             }
2088 
2089             TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);
2090 
2091             if (replacement == p) {  // detach
2092                 TreeNode<K, V> pp = p.parent;
2093                 p.parent = null;
2094                 if (pp != null) {
2095                     if (p == pp.left)
2096                         pp.left = null;
2097                     else if (p == pp.right)
2098                         pp.right = null;
2099                 }
2100             }
2101             if (movable)
2102                 moveRootToFront(tab, r);
2103         }
2104 
2105         /**
2106          * 將結點太多的桶分割
2107          *
2108          * @param map   the map
2109          * @param tab   the table for recording bin heads
2110          * @param index the index of the table being split
2111          * @param bit   the bit of hash to split on
2112          */
2113         final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
2114             TreeNode<K, V> b = this;
2115             // Relink into lo and hi lists, preserving order
2116             TreeNode<K, V> loHead = null, loTail = null;
2117             TreeNode<K, V> hiHead = null, hiTail = null;
2118             int lc = 0, hc = 0;
2119             for (TreeNode<K, V> e = b, next; e != null; e = next) {
2120                 next = (TreeNode<K, V>) e.next;
2121                 e.next = null;
2122                 if ((e.hash & bit) == 0) {
2123                     if ((e.prev = loTail) == null)
2124                         loHead = e;
2125                     else
2126                         loTail.next = e;
2127                     loTail = e;
2128                     ++lc;
2129                 } else {
2130                     if ((e.prev = hiTail) == null)
2131                         hiHead = e;
2132                     else
2133                         hiTail.next = e;
2134                     hiTail = e;
2135                     ++hc;
2136                 }
2137             }
2138 
2139             if (loHead != null) {
2140                 if (lc <= UNTREEIFY_THRESHOLD)
2141                     tab[index] = loHead.untreeify(map);
2142                 else {
2143                     tab[index] = loHead;
2144                     if (hiHead != null) // (else is already treeified)
2145                         loHead.treeify(tab);
2146                 }
2147             }
2148             if (hiHead != null) {
2149                 if (hc <= UNTREEIFY_THRESHOLD)
2150                     tab[index + bit] = hiHead.untreeify(map);
2151                 else {
2152                     tab[index + bit] = hiHead;
2153                     if (loHead != null)
2154                         hiHead.treeify(tab);
2155                 }
2156             }
2157         }
2158 
2159         /* ------------------------------------------------------------ */
2160         // 紅黑樹方法,都是從CLR中修改的
2161 
2162         /**
2163          * 左旋轉
2164          *
2165          * @param root
2166          * @param p
2167          * @param <K>
2168          * @param <V>
2169          * @return
2170          */
2171         static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root,
2172                                                 TreeNode<K, V> p) {
2173             TreeNode<K, V> r, pp, rl;
2174             if (p != null && (r = p.right) != null) {
2175                 if ((rl = p.right = r.left) != null)
2176                     rl.parent = p;
2177                 if ((pp = r.parent = p.parent) == null)
2178                     (root = r).red = false;
2179                 else if (pp.left == p)
2180                     pp.left = r;
2181                 else
2182                     pp.right = r;
2183                 r.left = p;
2184                 p.parent = r;
2185             }
2186             return root;
2187         }
2188 
2189         /**
2190          * 右旋轉
2191          *
2192          * @param root
2193          * @param p
2194          * @param <K>
2195          * @param <V>
2196          * @return
2197          */
2198         static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root,
2199                                                  TreeNode<K, V> p) {
2200             TreeNode<K, V> l, pp, lr;
2201             if (p != null && (l = p.left) != null) {
2202                 if ((lr = p.left = l.right) != null)
2203                     lr.parent = p;
2204                 if ((pp = l.parent = p.parent) == null)
2205                     (root = l).red = false;
2206                 else if (pp.right == p)
2207                     pp.right = l;
2208                 else
2209                     pp.left = l;
2210                 l.right = p;
2211                 p.parent = l;
2212             }
2213             return root;
2214         }
2215 
2216         /**
2217          * 保證插入後平衡
2218          *
2219          * @param root
2220          * @param x
2221          * @param <K>
2222          * @param <V>
2223          * @return
2224          */
2225         static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,
2226                                                       TreeNode<K, V> x) {
2227             x.red = true;
2228             for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
2229                 if ((xp = x.parent) == null) {
2230                     x.red = false;
2231                     return x;
2232                 } else if (!xp.red || (xpp = xp.parent) == null)
2233                     return root;
2234                 if (xp == (xppl = xpp.left)) {
2235                     if ((xppr = xpp.right) != null && xppr.red) {
2236                         xppr.red = false;
2237                         xp.red = false;
2238                         xpp.red = true;
2239                         x = xpp;
2240                     } else {
2241                         if (x == xp.right) {
2242                             root = rotateLeft(root, x = xp);
2243                             xpp = (xp = x.parent) == null ? null : xp.parent;
2244                         }
2245                         if (xp != null) {
2246                             xp.red = false;
2247                             if (xpp != null) {
2248                                 xpp.red = true;
2249                                 root = rotateRight(root, xpp);
2250                             }
2251                         }
2252                     }
2253                 } else {
2254                     if (xppl != null && xppl.red) {
2255                         xppl.red = false;
2256                         xp.red = false;
2257                         xpp.red = true;
2258                         x = xpp;
2259                     } else {
2260                         if (x == xp.left) {
2261                             root = rotateRight(root, x = xp);
2262                             xpp = (xp = x.parent) == null ? null : xp.parent;
2263                         }
2264                         if (xp != null) {
2265                             xp.red = false;
2266                             if (xpp != null) {
2267                                 xpp.red = true;
2268                                 root = rotateLeft(root, xpp);
2269                             }
2270                         }
2271                     }
2272                 }
2273             }
2274         }
2275 
2276         /**
2277          * 刪除後調整平衡
2278          *
2279          * @param root
2280          * @param x
2281          * @param <K>
2282          * @param <V>
2283          * @return
2284          */
2285         static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
2286                                                      TreeNode<K, V> x) {
2287             for (TreeNode<K, V> xp, xpl, xpr; ; ) {
2288                 if (x == null || x == root)
2289                     return root;
2290                 else if ((xp = x.parent) == null) {
2291                     x.red = false;
2292                     return x;
2293                 } else if (x.red) {
2294                     x.red = false;
2295                     return root;
2296                 } else if ((xpl = xp.left) == x) {
2297                     if ((xpr = xp.right) != null && xpr.red) {
2298                         xpr.red = false;
2299                         xp.red = true;
2300                         root = rotateLeft(root, xp);
2301                         xpr = (xp = x.parent) == null ? null : xp.right;
2302                     }
2303                     if (xpr == null)
2304                         x = xp;
2305                     else {
2306                         TreeNode<K, V> sl = xpr.left, sr = xpr.right;
2307                         if ((sr == null || !sr.red) &&
2308                                 (sl == null || !sl.red)) {
2309                             xpr.red = true;
2310                             x = xp;
2311                         } else {
2312                             if (sr == null || !sr.red) {
2313                                 if (sl != null)
2314                                     sl.red = false;
2315                                 xpr.red = true;
2316                                 root = rotateRight(root, xpr);
2317                                 xpr = (xp = x.parent) == null ?
2318                                         null : xp.right;
2319                             }
2320                             if (xpr != null) {
2321                                 xpr.red = (xp == null) ? false : xp.red;
2322                                 if ((sr = xpr.right) != null)
2323                                     sr.red = false;
2324                             }
2325                             if (xp != null) {
2326                                 xp.red = false;
2327                                 root = rotateLeft(root, xp);
2328                             }
2329                             x = root;
2330                         }
2331                     }
2332                 } else { // symmetric
2333                     if (xpl != null && xpl.red) {
2334                         xpl.red = false;
2335                         xp.red = true;
2336                         root = rotateRight(root, xp);
2337                         xpl = (xp = x.parent) == null ? null : xp.left;
2338                     }
2339                     if (xpl == null)
2340                         x = xp;
2341                     else {
2342                         TreeNode<K, V> sl = xpl.left, sr = xpl.right;
2343                         if ((sl == null || !sl.red) &&
2344                                 (sr == null || !sr.red)) {
2345                             xpl.red = true;
2346                             x = xp;
2347                         } else {
2348                             if (sl == null || !sl.red) {
2349                                 if (sr != null)
2350                                     sr.red = false;
2351                                 xpl.red = true;
2352                                 root = rotateLeft(root, xpl);
2353                                 xpl = (xp = x.parent) == null ?
2354                                         null : xp.left;
2355                             }
2356                             if (xpl != null) {
2357                                 xpl.red = (xp == null) ? false : xp.red;
2358                                 if ((sl = xpl.left) != null)
2359                                     sl.red = false;
2360                             }
2361                             if (xp != null) {
2362                                 xp.red = false;
2363                                 root = rotateRight(root, xp);
2364                             }
2365                             x = root;
2366                         }
2367                     }
2368                 }
2369             }
2370         }
2371 
2372         /**
2373          * 檢測是否符合紅黑樹
2374          */
2375         static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
2376             TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
2377                     tb = t.prev, tn = (TreeNode<K, V>) t.next;
2378             if (tb != null && tb.next != t)
2379                 return false;
2380             if (tn != null && tn.prev != t)
2381                 return false;
2382             if (tp != null && t != tp.left && t != tp.right)
2383                 return false;
2384             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2385                 return false;
2386             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2387                 return false;
2388             if (t.red && tl != null && tl.red && tr != null && tr.red)
2389                 return false;
2390             if (tl != null && !checkInvariants(tl))
2391                 return false;
2392             if (tr != null && !checkInvariants(tr))
2393                 return false;
2394             return true;
2395         }
2396     }
2397 
2398 }
相關文章
相關標籤/搜索