本文轉自:http://blog.csdn.net/g_salamander/article/details/7982170linux
early_suspend是Android休眠流程的第一階段即淺度休眠,不會受到wake_lock的阻止,通常用於關閉lcd、tp等設備爲運行的應用節約電能。Android的PowerManagerService會根據用戶的操做狀況調整電源狀態,若是須要休眠則會調用到HAL層的set_screen_state()接口,在set_screen_state()中會向/sys/power/state節點寫入"mem"值讓驅動層開始進入休眠流程。android
1、休眠喚醒機制及其用戶空間接口緩存
Linux系統支持以下休眠喚醒等級函數
- const char *const pm_states[PM_SUSPEND_MAX] = {
- #ifdef CONFIG_EARLYSUSPEND
- [PM_SUSPEND_ON] = "on",
- #endif
- [PM_SUSPEND_STANDBY] = "standby",
- [PM_SUSPEND_MEM] = "mem",
- };
但在Android中通常只支持"on"和"mem",其中"on"爲喚醒設備,"mem"爲休眠設備。/sys/power/state節點的讀寫操做以下:spa
- static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
- char *buf)
- {
- char *s = buf;
- #ifdef CONFIG_SUSPEND
- int i;
-
- for (i = 0; i < PM_SUSPEND_MAX; i++) {
- if (pm_states[i] && valid_state(i))
- s += sprintf(s,"%s ", pm_states[i]);
- }
- #endif
- #ifdef CONFIG_HIBERNATION
- s += sprintf(s, "%s\n", "disk");
- #else
- if (s != buf)
-
- *(s-1) = '\n';
- #endif
- return (s - buf);
- }
-
- static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
- const char *buf, size_t n)
- {
- #ifdef CONFIG_SUSPEND
- #ifdef CONFIG_EARLYSUSPEND
- suspend_state_t state = PM_SUSPEND_ON;
- #else
- suspend_state_t state = PM_SUSPEND_STANDBY;
- #endif
- const char * const *s;
- #endif
- char *p;
- int len;
- int error = -EINVAL;
-
- p = memchr(buf, '\n', n);
- len = p ? p - buf : n;
-
-
- if (len == 4 && !strncmp(buf, "disk", len)) {
- error = hibernate();
- goto Exit;
- }
-
- #ifdef CONFIG_SUSPEND
- for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
- if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
- break;
- }
- if (state < PM_SUSPEND_MAX && *s)
- #ifdef CONFIG_EARLYSUSPEND
- if (state == PM_SUSPEND_ON || valid_state(state)) {
- error = 0;
- request_suspend_state(state);
- }
- #else
- error = enter_state(state);
- #endif
- #endif
-
- Exit:
- return error ? error : n;
- }
-
- power_attr(state);
其中state_show()爲節點的讀函數,主要打印出系統支持的休眠等級;state_store()爲節點的寫函數,根據參數請求休眠或者喚醒流程。節點的建立代碼以下:.net
- static struct attribute * g[] = {
- &state_attr.attr,
- #ifdef CONFIG_PM_TRACE
- &pm_trace_attr.attr,
- #endif
- #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_PM_DEBUG)
- &pm_test_attr.attr,
- #endif
- #ifdef CONFIG_USER_WAKELOCK
- &wake_lock_attr.attr,
- &wake_unlock_attr.attr,
- #endif
- NULL,
- };
-
- static struct attribute_group attr_group = {
- .attrs = g,
- };
-
- static int __init pm_init(void)
- {
- int error = pm_start_workqueue();
- if (error)
- return error;
- power_kobj = kobject_create_and_add("power", NULL);
- if (!power_kobj)
- return -ENOMEM;
- return sysfs_create_group(power_kobj, &attr_group);
- }
-
- core_initcall(pm_init);
2、early_suspend 實現hibernate
一、early_suspend 定義、接口及其用法線程
- enum {
- EARLY_SUSPEND_LEVEL_BLANK_SCREEN = 50,
- EARLY_SUSPEND_LEVEL_STOP_DRAWING = 100,
- EARLY_SUSPEND_LEVEL_DISABLE_FB = 150,
- };
- struct early_suspend {
- #ifdef CONFIG_HAS_EARLYSUSPEND
- struct list_head link;
- int level;
- void (*suspend)(struct early_suspend *h);
- void (*resume)(struct early_suspend *h);
- #endif
- };
能夠看到early_suspend由兩個函數指針、鏈表節點、優先等級組成;內核默認定義了3個優先等級,在suspend的時候先執行優先等級低的handler,在resume的時候則先執行等級高的handler,用戶能夠定義本身的優先等級;early_suspend向內核空間提供了2個接口用於註冊和註銷handler:debug
- void register_early_suspend(struct early_suspend *handler);
- void unregister_early_suspend(struct early_suspend *handler);
其中register_early_suspend()用於註冊,unregister_early_suspend用於註銷;通常early_suspend的使用方式以下:指針
- ts->earlysuspend.suspend = sitronix_i2c_suspend_early;
- ts->earlysuspend.resume = sitronix_i2c_resume_late;
- ts->earlysuspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN;
- register_early_suspend(&ts->earlysuspend);
設置好suspend和resume接口,定義優先等級,而後註冊結構便可。
二、初始化信息
咱們看一下early_suspend須要用到的一些數據:
- static DEFINE_MUTEX(early_suspend_lock);
- static LIST_HEAD(early_suspend_handlers);
- static void early_sys_sync(struct work_struct *work);
- static void early_suspend(struct work_struct *work);
- static void late_resume(struct work_struct *work);
- static DECLARE_WORK(early_sys_sync_work,early_sys_sync);
- static DECLARE_WORK(early_suspend_work, early_suspend);
- static DECLARE_WORK(late_resume_work, late_resume);
- static DEFINE_SPINLOCK(state_lock);
- enum {
- SUSPEND_REQUESTED = 0x1,
- SUSPENDED = 0x2,
- SUSPEND_REQUESTED_AND_SUSPENDED = SUSPEND_REQUESTED | SUSPENDED,
- };
- static int state;
初始化了一個鏈表early_suspend_handlers用於管理early_suspend,還定義讀寫鏈表用到的互斥體;另外還聲明瞭3個工做隊列,分別用於緩存同步、淺度休眠和喚醒;還聲明瞭early_suspend操做的3個狀態。
三、register_early_suspend 和 unregister_early_suspend
- void register_early_suspend(struct early_suspend *handler)
- {
- struct list_head *pos;
-
- mutex_lock(&early_suspend_lock);
-
- list_for_each(pos, &early_suspend_handlers) {
- struct early_suspend *e;
- e = list_entry(pos, struct early_suspend, link);
-
-
- if (e->level > handler->level)
- break;
- }
-
- list_add_tail(&handler->link, pos);
- if ((state & SUSPENDED) && handler->suspend)
- handler->suspend(handler);
- mutex_unlock(&early_suspend_lock);
- }
- EXPORT_SYMBOL(register_early_suspend);
註冊的流程比較簡單,首先遍歷鏈表,依次比較每一個節點的優先等級,若是遇到優先等級比新節點優先等級高則跳出,而後將新節點加入優先等級較高的節點前面,這樣就確保了鏈表是優先等級低在前高在後的順序;在將節點加入鏈表後查看當前狀態是否爲淺度休眠完成狀態,若是是則執行handler的suspend函數。
- void unregister_early_suspend(struct early_suspend *handler)
- {
- mutex_lock(&early_suspend_lock);
- list_del(&handler->link);
- mutex_unlock(&early_suspend_lock);
- }
- EXPORT_SYMBOL(unregister_early_suspend);
註銷流程則只是將節點從鏈表中移除。
四、request_suspend_state
前面咱們看到用戶空間在寫/sys/power/state節點的時候會執行request_suspend_state()函數,該函數代碼以下:
- void request_suspend_state(suspend_state_t new_state)
- {
- unsigned long irqflags;
- int old_sleep;
-
- spin_lock_irqsave(&state_lock, irqflags);
- old_sleep = state & SUSPEND_REQUESTED;
-
- if (debug_mask & DEBUG_USER_STATE) {
- struct timespec ts;
- struct rtc_time tm;
- getnstimeofday(&ts);
- rtc_time_to_tm(ts.tv_sec, &tm);
- pr_info("request_suspend_state: %s (%d->%d) at %lld "
- "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)\n",
- new_state != PM_SUSPEND_ON ? "sleep" : "wakeup",
- requested_suspend_state, new_state,
- ktime_to_ns(ktime_get()),
- tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
- tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);
- }
-
- if (!old_sleep && new_state != PM_SUSPEND_ON) {
- state |= SUSPEND_REQUESTED;
- pr_info("sys_sync_work_queue early_sys_sync_work.\n");
-
- queue_work(sys_sync_work_queue, &early_sys_sync_work);
- queue_work(suspend_work_queue, &early_suspend_work);
- } else if (old_sleep && new_state == PM_SUSPEND_ON) {
-
- state &= ~SUSPEND_REQUESTED;
-
- wake_lock(&main_wake_lock);
-
- queue_work(suspend_work_queue, &late_resume_work);
- }
-
- requested_suspend_state = new_state;
- spin_unlock_irqrestore(&state_lock, irqflags);
- }
函數首先打印出當前狀態變化的log,而後判斷新狀態,若是是休眠狀態則置位SUSPEND_REQUESTED標誌,而後將同步緩存、淺度休眠工做隊列加入相應的內核線程執行;若是新狀態是喚醒則首先將main_wake_lock激活,而後再將淺度喚醒工做隊列加入內核線程執行;最後更新全局狀態變量,由於提供了一個內核空間接口用於獲取當前休眠喚醒狀態:
- suspend_state_t get_suspend_state(void)
- {
- return requested_suspend_state;
- }
五、early_suspend_work、late_resume_work 和 early_sys_sync
- static void early_suspend(struct work_struct *work)
- {
- struct early_suspend *pos;
- unsigned long irqflags;
- int abort = 0;
-
- mutex_lock(&early_suspend_lock);
- spin_lock_irqsave(&state_lock, irqflags);
- if (state == SUSPEND_REQUESTED)
- state |= SUSPENDED;
- else
- abort = 1;
- spin_unlock_irqrestore(&state_lock, irqflags);
-
- if (abort) {
- if (debug_mask & DEBUG_SUSPEND)
- pr_info("early_suspend: abort, state %d\n", state);
- mutex_unlock(&early_suspend_lock);
- goto abort;
- }
-
- if (debug_mask & DEBUG_SUSPEND)
- pr_info("early_suspend: call handlers\n");
-
-
- list_for_each_entry(pos, &early_suspend_handlers, link) {
- if (pos->suspend != NULL)
- pos->suspend(pos);
- }
- mutex_unlock(&early_suspend_lock);
-
- if (debug_mask & DEBUG_SUSPEND)
- pr_info("early_suspend: sync\n");
-
-
-
- abort:
- spin_lock_irqsave(&state_lock, irqflags);
- if (state == SUSPEND_REQUESTED_AND_SUSPENDED)
- wake_unlock(&main_wake_lock);
- spin_unlock_irqrestore(&state_lock, irqflags);
- }
在suspend流程中首先判斷當前狀態是否爲SUSPEND_REQUESTED,若是是則置位SUSPENDED標誌,若是不是則取消suspend流程;而後遍歷淺度休眠鏈表,從鏈表頭部到尾部依次調用各節點的suspend()函數,執行完後判斷當前狀態是否爲SUSPEND_REQUESTED_AND_SUSPENDED,若是是則釋放main_wake_lock,當前系統中若是隻存在main_wake_lock這個有效鎖,則會在wake_unlock()裏面啓動深度休眠線程,若是還有其餘其餘wake_lock則保持當前狀態。
- static void late_resume(struct work_struct *work)
- {
- struct early_suspend *pos;
- unsigned long irqflags;
- int abort = 0;
-
- mutex_lock(&early_suspend_lock);
- spin_lock_irqsave(&state_lock, irqflags);
- if (state == SUSPENDED)
- state &= ~SUSPENDED;
- else
- abort = 1;
- spin_unlock_irqrestore(&state_lock, irqflags);
-
- if (abort) {
- if (debug_mask & DEBUG_SUSPEND)
- pr_info("late_resume: abort, state %d\n", state);
- goto abort;
- }
- if (debug_mask & DEBUG_SUSPEND)
- pr_info("late_resume: call handlers\n");
-
-
- list_for_each_entry_reverse(pos, &early_suspend_handlers, link)
- if (pos->resume != NULL)
- pos->resume(pos);
- if (debug_mask & DEBUG_SUSPEND)
- pr_info("late_resume: done\n");
- abort:
- mutex_unlock(&early_suspend_lock);
- }
在resume流程中一樣首先判斷當前狀態是否爲SUSPENDED,若是是則清除SUSPENDED標誌,而後反向遍歷淺度休眠鏈表,按照優先等級從高到低的順序執行節點的resume()函數。