目錄python
reshapedom
transposecode
import tensorflow as tf
a = tf.random.normal([4, 28, 28, 3])
a.shape, a.ndim
(TensorShape([4, 28, 28, 3]), 4)
tf.reshape(a, [4, 784, 3]).shape # 給出一張圖片某個通道的數據,丟失行、寬的信息
TensorShape([4, 784, 3])
tf.reshape(a, [4, -1, 3]).shape # 4*(-1)*3 = 4*28*28*3
TensorShape([4, 784, 3])
tf.reshape(a, [4, 784*3]).shape # 給出一張圖片的全部數據,丟失行、寬和通道的信息
TensorShape([4, 2352])
tf.reshape(a, [4, -1]).shape
TensorShape([4, 2352])
tf.reshape(tf.reshape(a, [4, -1]), [4, 28, 28, 3]).shape
TensorShape([4, 28, 28, 3])
tf.reshape(tf.reshape(a, [4, -1]), [4, 14, 56, 3]).shape
TensorShape([4, 14, 56, 3])
tf.reshape(tf.reshape(a, [4, -1]), [4, 1, 784, 3]).shape
TensorShape([4, 1, 784, 3])
first reshape:orm
second reshape:索引
a = tf.random.normal((4, 3, 2, 1))
a.shape
TensorShape([4, 3, 2, 1])
tf.transpose(a).shape
TensorShape([1, 2, 3, 4])
tf.transpose(a, perm=[0, 1, 3, 2]).shape # 按照索引替換維度
TensorShape([4, 3, 1, 2])
a = tf.random.normal([4, 28, 28, 3]) # b,h,w,c
a.shape
TensorShape([4, 28, 28, 3])
tf.transpose(a, [0, 2, 1, 3]).shape # b,2,h,c
TensorShape([4, 28, 28, 3])
tf.transpose(a, [0, 3, 2, 1]).shape # b,c,w,h
TensorShape([4, 3, 28, 28])
tf.transpose(a, [0, 3, 1, 2]).shape # b,c,h,w
TensorShape([4, 3, 28, 28])
add school dim(增長學校的維度):圖片
a = tf.random.normal([4, 25, 8])
a.shape
TensorShape([4, 25, 8])
tf.expand_dims(a, axis=0).shape # 索引0前
TensorShape([1, 4, 25, 8])
tf.expand_dims(a, axis=3).shape # 索引3前
TensorShape([4, 25, 8, 1])
tf.expand_dims(a,axis=-1).shape # 索引-1後
TensorShape([4, 25, 8, 1])
tf.expand_dims(a,axis=-4).shape # 索引-4後,即左邊空白處
TensorShape([1, 4, 25, 8])
Only squeeze for shape = 1 dim(只刪除維度爲1的維度)it
tf.squeeze(tf.zeros([1,2,1,1,3])).shape
TensorShape([2, 3])
a = tf.zeros([1,2,1,3])
a.shape
TensorShape([1, 2, 1, 3])
tf.squeeze(a,axis=0).shape
TensorShape([2, 1, 3])
tf.squeeze(a,axis=2).shape
TensorShape([1, 2, 3])
tf.squeeze(a,axis=-2).shape
TensorShape([1, 2, 3])
tf.squeeze(a,axis=-4).shape
TensorShape([2, 1, 3])