[AI] 深度數據 - Data

Data Engineering


Data Pipeline

Introduction

[DE] How to learn Big Data【瞭解大數據】html

[DE] Pipeline for Data Engineering【工做流案例示範】
python

[DE] ML on Big data: MLlib【大數據的機器學習方案】
git

 

DE基礎(廈大)

 

[Spark] 00 - Install Hadoop & Spark【ing】github

[Spark] 01 - What is Spark【RDD原理和方法】算法

[Spark] 02 - Practice PySpark【實踐編程】sql

[Spark] 03 - Spark SQL【具備了SQL操做的便捷性】數據庫

[Spark] 04 - What is Spark Streamingapache

[Spark] 05 - Apache Kafka編程

[Spark] 06 - Structured Streaming【對應 DataFrame】架構

 

AWS基礎

[Full-stack] 一切皆在雲上 - AWS【AWS基礎服務】

[AWS] 01 - What is Amazon EMR【EMR簡介】

[AWS] 02 - Pipeline on EMR【基礎瞭解】

 

/* important */

 

 

 

Data Science


Local Data Processing

"矩陣"計算

[Code] 大蛇之數據工程【語法驅動】

[Code] 變態之人鍵合一【需求驅動】

[Pandas] 01 - A guy based on NumPy【如何高性能】

[Pandas] 02 - Tutorial of NumPy【NumPy常見用法】

 

"表格"處理

[Pandas] 03 - DataFrame【讀入並處理表格】

[Pandas] 04 - Efficient I/O【從數據庫加載到arr, df, EArray】

 

"特徵"工程

[Feature] Preprocessing tutorial【偉哥的特徵工程步驟講解】

[Feature] Feature engineering【特徵工程大綱】

[Feature] Build pipeline【展現Pipeline大概思路過程】

[Feature] Final pipeline: custom transformers【本章總結】

 

"機器"學習

[AI] 深度數學 - Bayes【Scikit-learn Cookbook】

[Distributed ML] Yi WANG's talk【王益大佬】

 

數據"可視化"

[Matplotlib] Data Representation

[Tableau] Tableau for BI

 

Kaggle經驗談

[Kaggle] Online Notebooks【模塊化代碼】

[Kaggle] How to kaggle?【方法導論】 

[Kaggle] How to handle big data?【方法進階】

 

 

 

Cloud Data Processing

Introduction

[ML] Pyspark ML tutorial for beginners【房價預測之"常規分析套路"】

 

ML-Features

[ML] Load and preview large scale data【保證特徵完整性】

[Link] https://spark.apache.org/docs/2.4.4/ml-guide.html

[ML] Pipeline in Distributed ML Library【Pipline"套路」】  

[ML] Online learning【Pipline做爲 「在線學習」 的 「數據源」】  

 

GPU ML

[GPU] Install H2O.ai

[GPU] Machine Learning on C++

[Spark] Spark 3.0 Accelerator Aware Scheduling - GPU

 

Distributed ML

[ML] LIBSVM Data: Classification, Regression, and Multi-label【三種方案時效對比】

[ML] Machine Learning in the Common Infrastructure ecosystem【架構瞭解】

 

 

 

Big Data Algorithms

本篇章終極形態,開發/優化一個大數據分佈式算法。

https://github.com/apache/spark/tree/master/examples/src/main/python/ml

 

https://spark.apache.org/mllib/

http://stanford.edu/~rezab/

http://stanford.edu/~rezab/slides/

Distributed Computing with Spark, Reza Zadeh 20140623

Reza Zadeh, Scalable Machine Learning

Apache Spark™ ML and Distributed Learning (1/5) (databrick)

Module 4: Creating Distributed Algorithms

 

stanford.edu: Chapter 12 Large-Scale Machine Learning

<Large Scale Machine Learning with Python>

 

Processing Big Data in Main Memory and on GPU,2016年碩士論文

[Spark News] Spark + GPU are the next generation technology

 

Spark大數據互聯網項目實戰推薦系統(全套)

Spark項目實戰:愛奇藝用戶行爲實時分析系統

/* implement */

相關文章
相關標籤/搜索