數學似宇宙,韭菜只關心其中實用的部分。html
scikit-learn (sklearn) 官方文檔中文版算法
scikit-learn Machine Learning in Pythonapache
一個新穎的online圖書資源集,很是棒。網絡
機器學習原理dom
9. [Bayesian] 「我是bayesian我怕誰」系列 - Gaussian Process【ignore】機器學習
[Scikit-learn] 1.1 Generalized Linear Models - Bayesian Ridge Regression【等價效果】wordpress
8. [Bayesian] 「我是bayesian我怕誰」系列 - Variational Autoencoders函數
[UFLDL] *Sparse Representation【稀疏表達】學習
7. [Bayesian] 「我是bayesian我怕誰」系列 - Boltzmann Distribution【ignore】
[Scikit-learn] Dynamic Bayesian Network - Conditional Random Field【去噪、詞性標註】
6. [Bayesian] 「我是bayesian我怕誰」系列 - Markov and Hidden Markov Models【隱馬及其擴展】
[Scikit-learn] Dynamic Bayesian Network - HMM【基礎實踐】
[Scikit-learn] Dynamic Bayesian Network - Kalman Filter【車定位預測】
[Scikit-learn] *Dynamic Bayesian Network - Partical Filter【機器人自我定位】
5. [Bayesian] 「我是bayesian我怕誰」系列 - Continuous Latent Variables【降維:PCA, PPCA, FA, ICA】
[Scikit-learn] 4.4 Dimensionality reduction - PCA
[Scikit-learn] 2.5 Dimensionality reduction - Probabilistic PCA & Factor Analysis
[Scikit-learn] 2.5 Dimensionality reduction - ICA
[Scikit-learn] 1.2 Dimensionality reduction - Linear and Quadratic Discriminant Analysis
4. [Bayesian] 「我是bayesian我怕誰」系列 - Variational Inference【公式推導解讀】
[Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM
[Scikit-learn] 2.1 Clustering - Variational Bayesian Gaussian Mixture
3. [Bayesian] 「我是bayesian我怕誰」系列 - Latent Variables【概念解讀】
[Bayes] Concept Search and LSI
[Bayes] Concept Search and PLSA
[Bayes] Concept Search and LDA
2. [Bayesian] 「我是bayesian我怕誰」系列 - Exact Inference【ignore】
1. [Bayesian] 「我是bayesian我怕誰」系列 - Naive Bayes with Prior【貝葉斯在文本分類的極簡例子】
[ML] Naive Bayes for Text Classification【原理概覽】
[Bayes] Maximum Likelihood estimates for text classification【代碼實現】
[Scikit-learn] 1.9 Naive Bayes【不一樣先驗的樸素貝葉斯】
<Statistical Inference> goto: 647/686
[Math] From Prior to Posterior distribution【先驗後驗基礎知識】
[Bayes] qgamma & rgamma: Central Credible Interval【後驗區間估計】
[Bayes] Multinomials and Dirichlet distribution【狄利克雷分佈】
其中兩個概念比較重要:
後驗便是:貝葉斯統計推斷
結合損失函數:貝葉斯統計決策
一種逼近求值策略:貝葉斯計算方法
[Bayes] MCMC (Markov Chain Monte Carlo)【利用了馬爾科夫的平穩性】
(a). Metropolis-Hasting算法
(b). Gibbs採樣算法
[ML] Roadmap: a long way to go【學習路線北斗導航】
[UFLDL] Basic Concept【基本ML概念】
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Regression
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification
[Scikit-learn] 1.1 Generalized Linear Models - Comparing various online solvers
[Scikit-learn] Yield miniBatch for online learning.
[UFLDL] Linear Regression & Classification
[Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2【最小二乘 --> 正則化】
[Scikit-learn] 1.1 Generalized Linear Models - Lasso Regression【L2相關「內容」,正則化分類固然也能夠用】
[ML] Bayesian Linear Regression【增量在線學習的例子】
[Scikit-learn] 1.4 Support Vector Regression【依據最外邊距】
[Scikit-learn] Theil-Sen Regression【抗噪能力較好】
# Discriminative Models
[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax【轉化爲最大似然,也能夠將參數「正則」】
[Scikit-learn] 1.1 Generalized Linear Models - Neural network models【MLP多層感知機】
[ML] Bayesian Logistic Regression【統計分類方法的區別】
[Scikit-learn] 1.4 Support Vector Regression【線性可分】
# Generative Models
Naive Bayes【參見 "貝葉斯機器學習"】
[ML] Linear Discriminant Analysis【ing】
[ML] Decision Tree & Ensembling Metholds【Bagging pk Boosting pk SVM】
[UFLDL] Dimensionality Reduction【廣義降維方法概述】
[Scikit-learn] 2.3 Clustering - kmeans
[Scikit-learn] 2.3 Clustering - Spectral clustering
[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise
[Scikit-learn] *2.3 Clustering - MeanShift
End.