在使用map的過程當中,有兩個問題是常常會遇到的:讀寫衝突和遍歷無序性。爲何會這樣呢,底層是怎麼實現的呢?帶着這兩個問題,我簡單的瞭解了一下map的增刪改查及遍歷的實現。api
type hmap struct { // Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go. // Make sure this stays in sync with the compiler's definition. count int // 有效數據的長度# live cells == size of map. Must be first (used by len() builtin) flags uint8 // 用於記錄hashmap的狀態 B uint8 // 2^B = buckets的數量log_2 of # of buckets (can hold up to loadFactor * 2^B items) noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details hash0 uint32 // 隨機的hash種子 buckets unsafe.Pointer // buckets數組array of 2^B Buckets. may be nil if count==0. oldbuckets unsafe.Pointer // 老的buctedts數據,map增加的時候會用到 nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated) extra *mapextra // 額外的bmap數組optional fields }
type mapextra struct { // If both key and value do not contain pointers and are inline, then we mark bucket // type as containing no pointers. This avoids scanning such maps. // However, bmap.overflow is a pointer. In order to keep overflow buckets // alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow. // overflow and oldoverflow are only used if key and value do not contain pointers. // overflow contains overflow buckets for hmap.buckets. // oldoverflow contains overflow buckets for hmap.oldbuckets. // The indirection allows to store a pointer to the slice in hiter. overflow *[]*bmap oldoverflow *[]*bmap // nextOverflow holds a pointer to a free overflow bucket. nextOverflow *bmap }
type bmap struct { // tophash generally contains the top byte of the hash value // for each key in this bucket. If tophash[0] < minTopHash, // tophash[0] is a bucket evacuation state instead. tophash [bucketCnt]uint8 // Followed by bucketCnt keys and then bucketCnt values. // NOTE: packing all the keys together and then all the values together makes the // code a bit more complicated than alternating key/value/key/value/... but it allows // us to eliminate padding which would be needed for, e.g., map[int64]int8. // Followed by an overflow pointer. }
type stringStruct struct { str unsafe.Pointer len int }
map遍歷時用到的結構,startBucket+offset設定了開始遍歷的地址,保證map遍歷的無序性數組
type hiter struct { // key的指針 key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/internal/gc/range.go). // 當前value的指針 value unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go). t *maptype // 指向map的指針 h *hmap // 指向buckets的指針 buckets unsafe.Pointer // bucket ptr at hash_iter initialization time // 指向當前遍歷的bucket的指針 bptr *bmap // current bucket // 指向map.extra.overflow overflow *[]*bmap // keeps overflow buckets of hmap.buckets alive // 指向map.extra.oldoverflow oldoverflow *[]*bmap // keeps overflow buckets of hmap.oldbuckets alive // 開始遍歷的bucket的索引 startBucket uintptr // bucket iteration started at // 開始遍歷bucket上的偏移量 offset uint8 // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1) wrapped bool // already wrapped around from end of bucket array to beginning B uint8 i uint8 bucket uintptr checkBucket uintptr }
這裏的keys和values、*overflow三個變量在結構體中並無體現,可是在源碼過程當中,一直有爲他們預留位置,因此這裏的示意圖中就展現出來了,keys和values其實8個長度的數組數據結構
咱們簡單寫個demo,經過go tool
來分析一下底層所對應的函數併發
func main() { m := make(map[interface{}]interface{}, 16) m["111"] = 1 m["222"] = 2 m["444"] = 4 _ = m["444"] _, _ = m["444"] delete(m, "444") for range m { } }
▶ go tool objdump -s "main.main" main | grep CALL main.go:4 0x455c74 e8f761fbff CALL runtime.makemap(SB) main.go:5 0x455ce1 e8da6dfbff CALL runtime.mapassign(SB) main.go:6 0x455d7b e8406dfbff CALL runtime.mapassign(SB) main.go:7 0x455e15 e8a66cfbff CALL runtime.mapassign(SB) main.go:8 0x455e88 e89363fbff CALL runtime.mapaccess1(SB) main.go:9 0x455ec4 e84766fbff CALL runtime.mapaccess2(SB) main.go:10 0x455f00 e85b72fbff CALL runtime.mapdelete(SB) main.go:12 0x455f28 e804a7ffff CALL 0x450631 main.go:12 0x455f53 e8b875fbff CALL runtime.mapiterinit(SB) main.go:12 0x455f75 e88677fbff CALL runtime.mapiternext(SB) main.go:7 0x455f8f e81c9cffff CALL runtime.gcWriteBarrier(SB) main.go:6 0x455f9c e80f9cffff CALL runtime.gcWriteBarrier(SB) main.go:5 0x455fa9 e8029cffff CALL runtime.gcWriteBarrier(SB) main.go:3 0x455fb3 e8f87dffff CALL runtime.morestack_noctxt(SB)
makemap建立一個hmap結構體,並賦予這個變量一些初始的屬性app
func makemap(t *maptype, hint int, h *hmap) *hmap { // 首先判斷map的大小是否合適 if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) { hint = 0 } // initialize Hmap // 初始化hmap結構 if h == nil { h = new(hmap) } // 生成一個隨機的hash種子 h.hash0 = fastrand() // find size parameter which will hold the requested # of elements // 根據hint,也就是map預設的長度,肯定B的大小,以使map的裝載係數在正常範圍內,擴容那塊再細講 B := uint8(0) for overLoadFactor(hint, B) { B++ } h.B = B // allocate initial hash table // if B == 0, the buckets field is allocated lazily later (in mapassign) // If hint is large zeroing this memory could take a while. // 若是B==0,則賦值的時候進行惰性分配,若是B!=0,則分配對應數量的buckets if h.B != 0 { var nextOverflow *bmap h.buckets, nextOverflow = makeBucketArray(t, h.B, nil) if nextOverflow != nil { h.extra = new(mapextra) h.extra.nextOverflow = nextOverflow } } return h }
makeBucketArray初始化了map所需的buckets,最少分配2^b個bucketsless
func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) { base := bucketShift(b) nbuckets := base // 若是b,也就是map比較大的狀況,則多分配點數組,給nextOverflow使用 if b >= 4 { // 計算應該多分配的buckets數量 nbuckets += bucketShift(b - 4) sz := t.bucket.size * nbuckets up := roundupsize(sz) if up != sz { nbuckets = up / t.bucket.size } } // 若是不是 dirtyalloc,新分配map空間時,dirtyalloc爲nil if dirtyalloc == nil { // 申請buckets數組 buckets = newarray(t.bucket, int(nbuckets)) } else { // dirtyalloc was previously generated by // the above newarray(t.bucket, int(nbuckets)) // but may not be empty. buckets = dirtyalloc size := t.bucket.size * nbuckets if t.bucket.kind&kindNoPointers == 0 { memclrHasPointers(buckets, size) } else { memclrNoHeapPointers(buckets, size) } } // 判斷是否多申請了buckets,多申請的buckets放在nextOverflow裏面以備後用 if base != nbuckets { nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize))) last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize))) last.setoverflow(t, (*bmap)(buckets)) } return buckets, nextOverflow }
初始化的過程到此就結束了,比較簡單,就是根據初始化的大小,肯定buckets的數量,並分配內存等dom
在上面的go tool
分析過程當中能夠發現ide
mapaccess1
mapaccess2
兩個函數的邏輯大體相同,咱們以mapaccess1
爲例來分析函數
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { // 若是h尚未實例化,或者尚未值,返回零值 if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } // 判斷當前map是否處於 寫 的過程當中,讀寫衝突 if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } // 根據初始化生產的hash隨機種子hash0,計算key的hash值 alg := t.key.alg hash := alg.hash(key, uintptr(h.hash0)) m := bucketMask(h.B) // 根據key的hash值,計算出對應的bucket的位置,計算過程後面圖示 b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) // 擴容的過程當中,oldbuckets不爲空,因此這時候,這時候須要判斷,目標bucket是否已經遷移完成了,擴容的時候細講 if c := h.oldbuckets; c != nil { if !h.sameSizeGrow() { // There used to be half as many buckets; mask down one more power of two. m >>= 1 } // 若是目標bucket在擴容中尚未遷移,則到oldbuckets中找目標bucket oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } // 計算出key的tophash,用於比對 top := tophash(hash) for ; b != nil; b = b.overflow(t) { for i := uintptr(0); i < bucketCnt; i++ { // 若是tophash不一致,key確定不一樣,繼續尋找下一個 if b.tophash[i] != top { continue } // tophash一直,須要判斷key是否一致 k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) if t.indirectkey { k = *((*unsafe.Pointer)(k)) } // key也是相同的,則返回對應的value if alg.equal(key, k) { v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) if t.indirectvalue { v = *((*unsafe.Pointer)(v)) } return v } } } return unsafe.Pointer(&zeroVal[0]) }
這個函數就是找bmap的overflow的地址,經過結構圖中能夠看出,找到bmap結構體的最後一個指針佔用的內存單元就是overflow指向的下一個bmap的地址了post
func (b *bmap) overflow(t *maptype) *bmap { return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) }
上面的邏輯比較簡單,可是在這裏有幾個問題須要解決
先放一下buckets和bmap的放大圖
bucket(bmap結構體)是怎麼肯定的
bucket := hash & bucketMask(h.B) b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
加入B=5,則說明buckets的數量爲2^5 = 32,則取hash的末5位,來計算出目標bucket的索引,圖中計算出索引爲6,因此,在buckets上偏移6個bucket大小的地址,便可找到對應的bucket
tophash是怎麼肯定的
func tophash(hash uintptr) uint8 { top := uint8(hash >> (sys.PtrSize*8 - 8)) if top < minTopHash { top += minTopHash } return top }
每一個bucket的tophash數組的長度爲8,因此,這裏直接去hash值的前8位計算出來數值,既是tophash了
key和value的地址爲何是經過偏移來計算的
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
根據最開始的數據結構分析和上面的bmap圖示,能夠看出bmap中全部的key是放在一塊兒的,全部的value是放在一塊兒的,dataoffset是tophash[8]所佔用的大小,因此,key所在的地址也就是 b的地址+dataOffset的偏移+對應的索引i*key的大小,同理value是排列在key的後面的
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { if h == nil { panic(plainError("assignment to entry in nil map")) } // map併發讀寫的處理,直接拋異常 if h.flags&hashWriting != 0 { throw("concurrent map writes") } // 根據map的hash種子 hash0,計算key的hash值 alg := t.key.alg hash := alg.hash(key, uintptr(h.hash0)) // Set hashWriting after calling alg.hash, since alg.hash may panic, // in which case we have not actually done a write. h.flags |= hashWriting // 若是map沒有buckets,就分配(make(map)不指定map長度的時候就會惰性分配buckets) if h.buckets == nil { h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) } again: // 根據計算出的hash值,來肯定應該插入的bucket在buckets中的索引 bucket := hash & bucketMask(h.B) // 判斷是否在擴容map,growWork是來完成擴容操做的 if h.growing() { growWork(t, h, bucket) } // 確認bucket的地址 b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) // 根據計算出hash二進制前八位的值,做爲tophash使用 top := tophash(hash) var inserti *uint8 var insertk unsafe.Pointer var val unsafe.Pointer for { for i := uintptr(0); i < bucketCnt; i++ { // 循環遍歷tophash數組,若是數組的索引位置爲空,先拿過來使用 if b.tophash[i] != top { if b.tophash[i] == empty && inserti == nil { inserti = &b.tophash[i] insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) } continue } // 找到了tophash數組中找到了當前key的tophash一致的狀況 k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) // 若是key是指針,獲取指針對應的數據 if t.indirectkey { k = *((*unsafe.Pointer)(k)) } // 判斷這兩個key是否相同,不一樣繼續尋找 if !alg.equal(key, k) { continue } // already have a mapping for key. Update it. if t.needkeyupdate { typedmemmove(t.key, k, key) } // 根據i找到value應該存放的位置,能夠結合結構圖中bmap的數據結構來理解 val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) goto done } // buckets中沒有找到空餘的位置或者相同的key,則到overflow中查找 ovf := b.overflow(t) if ovf == nil { break } b = ovf } // Did not find mapping for key. Allocate new cell & add entry. // If we hit the max load factor or we have too many overflow buckets, // and we're not already in the middle of growing, start growing. // 判斷是否須要擴容 if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again } // inerti==nil,表示map的buckets都滿了,則須要新加一個overflow掛載到map和對應的bmap下 if inserti == nil { // all current buckets are full, allocate a new one. newb := h.newoverflow(t, b) inserti = &newb.tophash[0] insertk = add(unsafe.Pointer(newb), dataOffset) val = add(insertk, bucketCnt*uintptr(t.keysize)) } // store new key/value at insert position // 存儲key value到指定的位置 if t.indirectkey { kmem := newobject(t.key) *(*unsafe.Pointer)(insertk) = kmem insertk = kmem } if t.indirectvalue { vmem := newobject(t.elem) *(*unsafe.Pointer)(val) = vmem } typedmemmove(t.key, insertk, key) *inserti = top h.count++ done: if h.flags&hashWriting == 0 { throw("concurrent map writes") } // 修改map的flags h.flags &^= hashWriting if t.indirectvalue { val = *((*unsafe.Pointer)(val)) } return val }
func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap { var ovf *bmap // 先去找一下預先分配的有沒有剩餘的overflow if h.extra != nil && h.extra.nextOverflow != nil { // We have preallocated overflow buckets available. // See makeBucketArray for more details. // 預先分配的有,直接使用預先分配的,而後更新一下 下一個能夠用overflow => nextOverflow ovf = h.extra.nextOverflow if ovf.overflow(t) == nil { // We're not at the end of the preallocated overflow buckets. Bump the pointer. h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.bucketsize))) } else { // This is the last preallocated overflow bucket. // Reset the overflow pointer on this bucket, // which was set to a non-nil sentinel value. ovf.setoverflow(t, nil) h.extra.nextOverflow = nil } } else { ovf = (*bmap)(newobject(t.bucket)) } // 增長noverflow h.incrnoverflow() if t.bucket.kind&kindNoPointers != 0 { h.createOverflow() *h.extra.overflow = append(*h.extra.overflow, ovf) } // 把當前overflow,掛載到bmap的overflow鏈表後面 b.setoverflow(t, ovf) return ovf }
overflow指向的就是一個bmap結構,而bmap結構的最後一個地址,存儲的是overflow的地址,經過bmap.overflow能夠將bmap的全部overflow串聯起來,hmap.extra.nextOverflow也是同樣的邏輯
在mapassign
函數中能夠看到,擴容發生的狀況有兩種
overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)
先來看一下這兩個函數
func overLoadFactor(count int, B uint8) bool { // loadFactorNum = 13; loadFactorDen = 2 return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen) }
uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
能夠簡化爲 count / (2^B) > 6.5
, 這個6.5即是表明loadFactor的負載係數
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool { // If the threshold is too low, we do extraneous work. // If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory. // "too many" means (approximately) as many overflow buckets as regular buckets. // See incrnoverflow for more details. if B > 15 { B = 15 } // The compiler doesn't see here that B < 16; mask B to generate shorter shift code. return noverflow >= uint16(1)<<(B&15) }
經過判斷noverflow的數量來判斷overflow是否太多
咱們理解一下這兩種狀況擴容的緣由
根據key查找的過程當中,根據末B位肯定bucket,高8位肯定tophash,可是查找tophash的過程當中,是須要遍歷整個bucket的,因此,最優的狀況是每一個bucket只存儲一個key,這樣就達到了hash的O(1)的查找效率,可是空間卻大大的浪費了;若是全部的key都存儲到了一個bucket裏面面,就退變成了鏈表,查找效率就變成了O(n),因此裝載係數就是爲了平衡查找效率和存儲空間的,當裝載係數過大,就須要增長bucket了,來提升查找效率,即增量擴容
當bucket的空位所有填滿的時候,裝載係數就達到了8,爲何還會有tooManyOverflowBuckets的判斷呢,map不只有增長還有刪除的操做,當某一個bucket的空位填滿後,開始填充到overflow裏面,這時候再刪除bucket裏面的數據,其實整個過程頗有可能並無觸發 超過負載擴容機制的,(由於有較多的buckets),可是查找overflow的數據,就首先要遍歷bucket的數據,這個就是無用功了,查找效率就低了,這時候須要不增長bucket數量的擴容,也就是等量擴容
擴容的工做是由hashGrow
開始的,可是真正進行遷移工做的是evacuate
, 由growWork
進行d調用;在每一次的maassign和mapdelete的時候,會判斷這個map是否正在進行擴容操做,若是是的,就遷移當前的bucket;因此,map的擴容並非一蹴而就的,而是一個按部就班的過程
func hashGrow(t *maptype, h *hmap) { // If we've hit the load factor, get bigger. // Otherwise, there are too many overflow buckets, // so keep the same number of buckets and "grow" laterally. // 判斷是等量擴容仍是增量擴容 bigger := uint8(1) if !overLoadFactor(h.count+1, h.B) { bigger = 0 h.flags |= sameSizeGrow } // 爲map根據新的B(h.B+bigger爲新的h.B)從新分配新的buckets和overflow oldbuckets := h.buckets newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil) flags := h.flags &^ (iterator | oldIterator) if h.flags&iterator != 0 { flags |= oldIterator } // commit the grow (atomic wrt gc) // 更新hmap相關的屬性 h.B += bigger h.flags = flags h.oldbuckets = oldbuckets h.buckets = newbuckets h.nevacuate = 0 h.noverflow = 0 // 將老的map的extra和nextOverflow更新到新的map結構下面 if h.extra != nil && h.extra.overflow != nil { // Promote current overflow buckets to the old generation. if h.extra.oldoverflow != nil { throw("oldoverflow is not nil") } h.extra.oldoverflow = h.extra.overflow h.extra.overflow = nil } if nextOverflow != nil { if h.extra == nil { h.extra = new(mapextra) } h.extra.nextOverflow = nextOverflow } // the actual copying of the hash table data is done incrementally // by growWork() and evacuate(). }
hashGrow
這個前菜已經準備完成了,接下來就交給growWork
和 evacuate
兩個函數來完成的
func growWork(t *maptype, h *hmap, bucket uintptr) { // make sure we evacuate the oldbucket corresponding // to the bucket we're about to use evacuate(t, h, bucket&h.oldbucketmask()) // evacuate one more oldbucket to make progress on growing if h.growing() { evacuate(t, h, h.nevacuate) } }
講hmap中的一個bucket搬移到新的buckets中,老的bucket裏key與新的buckets中位置的對應,一樣參考map的查找過程
這裏如何判斷這個bucket是否已經搬移過了呢,主要就是依據evacuated
函數來判斷
func evacuated(b *bmap) bool { h := b.tophash[0] return h > empty && h < minTopHash }
看了源碼就發現原理很簡單,就是對tophash[0]值的判斷,那麼確定是在搬移以後設置的這個值,咱們經過evacuate
函數l哎一探究竟吧
func evacuate(t *maptype, h *hmap, oldbucket uintptr) { b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) newbit := h.noldbuckets() // 判斷是否搬移過 if !evacuated(b) { // TODO: reuse overflow buckets instead of using new ones, if there // is no iterator using the old buckets. (If !oldIterator.) // xy contains the x and y (low and high) evacuation destinations. // 吧bucket原先對應的索引賦值給x var xy [2]evacDst x := &xy[0] x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) x.k = add(unsafe.Pointer(x.b), dataOffset) x.v = add(x.k, bucketCnt*uintptr(t.keysize)) // 若是是增量擴容,擴容後的bucket有變,假如以B=5爲例,B+1= 6,這時候去倒數6位計算bucket的索引,可是倒數第6位只能是0或者1,也就是說索引只能是,x或y(x+newbit),這裏計算出來y,以備後用 if !h.sameSizeGrow() { // Only calculate y pointers if we're growing bigger. // Otherwise GC can see bad pointers. y := &xy[1] y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) y.k = add(unsafe.Pointer(y.b), dataOffset) y.v = add(y.k, bucketCnt*uintptr(t.keysize)) } // 進行搬移 for ; b != nil; b = b.overflow(t) { k := add(unsafe.Pointer(b), dataOffset) v := add(k, bucketCnt*uintptr(t.keysize)) for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) { top := b.tophash[i] // 空的跳過 if top == empty { b.tophash[i] = evacuatedEmpty continue } if top < minTopHash { throw("bad map state") } k2 := k if t.indirectkey { k2 = *((*unsafe.Pointer)(k2)) } var useY uint8 if !h.sameSizeGrow() { // Compute hash to make our evacuation decision (whether we need // to send this key/value to bucket x or bucket y). // 判斷hash計算出來,是使用x仍是y,等量擴容是使用x hash := t.key.alg.hash(k2, uintptr(h.hash0)) if h.flags&iterator != 0 && !t.reflexivekey && !t.key.alg.equal(k2, k2) { // If key != key (NaNs), then the hash could be (and probably // will be) entirely different from the old hash. Moreover, // it isn't reproducible. Reproducibility is required in the // presence of iterators, as our evacuation decision must // match whatever decision the iterator made. // Fortunately, we have the freedom to send these keys either // way. Also, tophash is meaningless for these kinds of keys. // We let the low bit of tophash drive the evacuation decision. // We recompute a new random tophash for the next level so // these keys will get evenly distributed across all buckets // after multiple grows. useY = top & 1 top = tophash(hash) } else { if hash&newbit != 0 { useY = 1 } } } if evacuatedX+1 != evacuatedY { throw("bad evacuatedN") } b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY dst := &xy[useY] // evacuation destination // 若是目標的bucket已經滿了,則新建overflow,掛載到bucket上,並使用這個overflow if dst.i == bucketCnt { dst.b = h.newoverflow(t, dst.b) dst.i = 0 dst.k = add(unsafe.Pointer(dst.b), dataOffset) dst.v = add(dst.k, bucketCnt*uintptr(t.keysize)) } // 拷貝key value,設置tophash數組的對應索引的值 dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check if t.indirectkey { *(*unsafe.Pointer)(dst.k) = k2 // copy pointer } else { typedmemmove(t.key, dst.k, k) // copy value } if t.indirectvalue { *(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v) } else { typedmemmove(t.elem, dst.v, v) } dst.i++ // These updates might push these pointers past the end of the // key or value arrays. That's ok, as we have the overflow pointer // at the end of the bucket to protect against pointing past the // end of the bucket. dst.k = add(dst.k, uintptr(t.keysize)) dst.v = add(dst.v, uintptr(t.valuesize)) } } // Unlink the overflow buckets & clear key/value to help GC. if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 { b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)) // Preserve b.tophash because the evacuation // state is maintained there. ptr := add(b, dataOffset) n := uintptr(t.bucketsize) - dataOffset memclrHasPointers(ptr, n) } } if oldbucket == h.nevacuate { advanceEvacuationMark(h, t, newbit) } }
擴容是逐步進行的,一次搬運一個bucket
咱們以原先的B=5爲例,如今增量擴容後B=6,可是hash的倒數第6位只能是0或1,也就是說,若是原先計算出來的bucket索引爲6的話,即 00110,那麼新的bucket對應的索引只能是 100110(6+2^5)或 000110(6),x對應的就是6,y對應的就是(6+2^5);若是是等量擴容,那麼索引確定就是不變的,這時候就不須要y了
找到對應的新的bucket以後,按順序依次存放就ok了
刪除的邏輯比較簡單,根據key查找,找到就清空key和value及tophash
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { if h == nil || h.count == 0 { return } // 讀寫衝突 if h.flags&hashWriting != 0 { throw("concurrent map writes") } // 下面一大片的計算hash,查找bucket,查到bucket裏面的key,邏輯同樣,就不重複了 alg := t.key.alg hash := alg.hash(key, uintptr(h.hash0)) // Set hashWriting after calling alg.hash, since alg.hash may panic, // in which case we have not actually done a write (delete). h.flags |= hashWriting bucket := hash & bucketMask(h.B) if h.growing() { growWork(t, h, bucket) } b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize))) top := tophash(hash) search: for ; b != nil; b = b.overflow(t) { for i := uintptr(0); i < bucketCnt; i++ { if b.tophash[i] != top { continue } k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) k2 := k if t.indirectkey { k2 = *((*unsafe.Pointer)(k2)) } if !alg.equal(key, k2) { continue } // Only clear key if there are pointers in it. // 這裏找到了key,若是key是指針,設爲nil,不然清空key對應內存的數據 if t.indirectkey { *(*unsafe.Pointer)(k) = nil } else if t.key.kind&kindNoPointers == 0 { memclrHasPointers(k, t.key.size) } // 同理刪除v v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) if t.indirectvalue { *(*unsafe.Pointer)(v) = nil } else if t.elem.kind&kindNoPointers == 0 { memclrHasPointers(v, t.elem.size) } else { memclrNoHeapPointers(v, t.elem.size) } // 把tophash設置爲0,並更新count屬性 b.tophash[i] = empty h.count-- break search } } if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting }
按通常的思惟來考慮,遍歷值須要遍歷buckets數組裏面的每一個bucket以及bucket下掛的overflow鏈表便可,可是map存在擴容的狀況,這樣就會致使遍歷的難度增大了,咱們看一下go是怎麼實現的
根據go tool
的分析,咱們能夠簡單看一下遍歷時的流程信息
func mapiterinit(t *maptype, h *hmap, it *hiter) { if h == nil || h.count == 0 { return } if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 { throw("hash_iter size incorrect") // see cmd/compile/internal/gc/reflect.go } // 設置iter的屬性 it.t = t it.h = h // grab snapshot of bucket state it.B = h.B it.buckets = h.buckets if t.bucket.kind&kindNoPointers != 0 { // Allocate the current slice and remember pointers to both current and old. // This preserves all relevant overflow buckets alive even if // the table grows and/or overflow buckets are added to the table // while we are iterating. h.createOverflow() it.overflow = h.extra.overflow it.oldoverflow = h.extra.oldoverflow } // decide where to start // 隨機生成一個種子,並根據這個隨機種子計算出startBucket和offset,保證遍歷的隨機性 r := uintptr(fastrand()) if h.B > 31-bucketCntBits { r += uintptr(fastrand()) << 31 } it.startBucket = r & bucketMask(h.B) it.offset = uint8(r >> h.B & (bucketCnt - 1)) // iterator state it.bucket = it.startBucket // Remember we have an iterator. // Can run concurrently with another mapiterinit(). if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator { atomic.Or8(&h.flags, iterator|oldIterator) } // 開始遍歷 mapiternext(it) }
func mapiternext(it *hiter) { h := it.h if raceenabled { callerpc := getcallerpc() racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext)) } if h.flags&hashWriting != 0 { throw("concurrent map iteration and map write") } t := it.t bucket := it.bucket b := it.bptr i := it.i checkBucket := it.checkBucket alg := t.key.alg next: // b==nil說明bucket.overflow鏈表已經遍歷完成了,遍歷下一個bucket if b == nil { // 遍歷到了開始的bucket,並且startBucket被遍歷過了,則說明整個map遍歷完成了 if bucket == it.startBucket && it.wrapped { // end of iteration it.key = nil it.value = nil return } // 若是hmap正在擴容,則判斷當前遍歷的bucket是否搬移完了,搬移完了,使用新得bucket,不然使用oldbucket if h.growing() && it.B == h.B { // Iterator was started in the middle of a grow, and the grow isn't done yet. // If the bucket we're looking at hasn't been filled in yet (i.e. the old // bucket hasn't been evacuated) then we need to iterate through the old // bucket and only return the ones that will be migrated to this bucket. oldbucket := bucket & it.h.oldbucketmask() b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) if !evacuated(b) { checkBucket = bucket } else { b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) checkBucket = noCheck } } else { b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) checkBucket = noCheck } bucket++ // 遍歷到了數組末尾,從數組頭繼續遍歷 if bucket == bucketShift(it.B) { bucket = 0 it.wrapped = true } i = 0 } // 遍歷當前bucket或者bucket.overflow裏面的數據 for ; i < bucketCnt; i++ { // 經過offset與i,肯定正在遍歷的bucket的tophash的索引 offi := (i + it.offset) & (bucketCnt - 1) if b.tophash[offi] == empty || b.tophash[offi] == evacuatedEmpty { continue } // 根據偏移量i,肯定key和value的地址 k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize)) if t.indirectkey { k = *((*unsafe.Pointer)(k)) } v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize)) if checkBucket != noCheck && !h.sameSizeGrow() { // 說明增量擴容中,須要進一步判斷 // Special case: iterator was started during a grow to a larger size // and the grow is not done yet. We're working on a bucket whose // oldbucket has not been evacuated yet. Or at least, it wasn't // evacuated when we started the bucket. So we're iterating // through the oldbucket, skipping any keys that will go // to the other new bucket (each oldbucket expands to two // buckets during a grow). if t.reflexivekey || alg.equal(k, k) { // 數據尚未從oldbucket遷移到新的bucket裏面,判斷這個key從新計算後是否與oldbucket的索引一致,不一致則跳過 // If the item in the oldbucket is not destined for // the current new bucket in the iteration, skip it. hash := alg.hash(k, uintptr(h.hash0)) if hash&bucketMask(it.B) != checkBucket { continue } } else { // Hash isn't repeatable if k != k (NaNs). We need a // repeatable and randomish choice of which direction // to send NaNs during evacuation. We'll use the low // bit of tophash to decide which way NaNs go. // NOTE: this case is why we need two evacuate tophash // values, evacuatedX and evacuatedY, that differ in // their low bit. if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) { continue } } } if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) || !(t.reflexivekey || alg.equal(k, k)) { // 這裏的數據不是正在擴容中的數據,能夠直接使用 // This is the golden data, we can return it. // OR // key!=key, so the entry can't be deleted or updated, so we can just return it. // That's lucky for us because when key!=key we can't look it up successfully. it.key = k if t.indirectvalue { v = *((*unsafe.Pointer)(v)) } it.value = v } else { // The hash table has grown since the iterator was started. // The golden data for this key is now somewhere else. // Check the current hash table for the data. // This code handles the case where the key // has been deleted, updated, or deleted and reinserted. // NOTE: we need to regrab the key as it has potentially been // updated to an equal() but not identical key (e.g. +0.0 vs -0.0). // 在遍歷開始以後,這個map進行了擴容,數據可能不正確,從新查找獲取一下 rk, rv := mapaccessK(t, h, k) if rk == nil { continue // key has been deleted } it.key = rk it.value = rv } it.bucket = bucket if it.bptr != b { // avoid unnecessary write barrier; see issue 14921 it.bptr = b } it.i = i + 1 it.checkBucket = checkBucket return } // 遍歷bucket.overflow鏈表 b = b.overflow(t) i = 0 goto next }
總體思路以下: