Go map原理剖析

在使用map的過程當中,有兩個問題是常常會遇到的:讀寫衝突和遍歷無序性。爲何會這樣呢,底層是怎麼實現的呢?帶着這兩個問題,我簡單的瞭解了一下map的增刪改查及遍歷的實現。api

結構

hmap

type hmap struct {
	// Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
	// Make sure this stays in sync with the compiler's definition.
	count     int // 有效數據的長度# live cells == size of map. Must be first (used by len() builtin)
	flags     uint8 // 用於記錄hashmap的狀態
	B         uint8  // 2^B = buckets的數量log_2 of # of buckets (can hold up to loadFactor * 2^B items)
	noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
	hash0     uint32 // 隨機的hash種子

	buckets    unsafe.Pointer // buckets數組array of 2^B Buckets. may be nil if count==0.
	oldbuckets unsafe.Pointer // 老的buctedts數據,map增加的時候會用到
	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)

	extra *mapextra // 額外的bmap數組optional fields
}
複製代碼

mapextra

type mapextra struct {
	// If both key and value do not contain pointers and are inline, then we mark bucket
	// type as containing no pointers. This avoids scanning such maps.
	// However, bmap.overflow is a pointer. In order to keep overflow buckets
	// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
	// overflow and oldoverflow are only used if key and value do not contain pointers.
	// overflow contains overflow buckets for hmap.buckets.
	// oldoverflow contains overflow buckets for hmap.oldbuckets.
	// The indirection allows to store a pointer to the slice in hiter.
	overflow    *[]*bmap
	oldoverflow *[]*bmap

	// nextOverflow holds a pointer to a free overflow bucket.
	nextOverflow *bmap
}
複製代碼

bmap

type bmap struct {
	// tophash generally contains the top byte of the hash value
	// for each key in this bucket. If tophash[0] < minTopHash,
	// tophash[0] is a bucket evacuation state instead.
	tophash [bucketCnt]uint8
	// Followed by bucketCnt keys and then bucketCnt values.
	// NOTE: packing all the keys together and then all the values together makes the
	// code a bit more complicated than alternating key/value/key/value/... but it allows
	// us to eliminate padding which would be needed for, e.g., map[int64]int8.
	// Followed by an overflow pointer.
}
複製代碼

stringStruct

type stringStruct struct {
	str unsafe.Pointer
	len int
}
複製代碼

hiter

map遍歷時用到的結構,startBucket+offset設定了開始遍歷的地址,保證map遍歷的無序性數組

type hiter struct {
  // key的指針
	key         unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/internal/gc/range.go).
  // 當前value的指針
	value       unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
	t           *maptype
  // 指向map的指針
	h           *hmap
  // 指向buckets的指針
	buckets     unsafe.Pointer // bucket ptr at hash_iter initialization time
  // 指向當前遍歷的bucket的指針
	bptr        *bmap          // current bucket
  // 指向map.extra.overflow
	overflow    *[]*bmap       // keeps overflow buckets of hmap.buckets alive
  // 指向map.extra.oldoverflow
	oldoverflow *[]*bmap       // keeps overflow buckets of hmap.oldbuckets alive
  // 開始遍歷的bucket的索引
	startBucket uintptr        // bucket iteration started at
  // 開始遍歷bucket上的偏移量
	offset      uint8          // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
	wrapped     bool           // already wrapped around from end of bucket array to beginning
	B           uint8
	i           uint8
	bucket      uintptr
	checkBucket uintptr
}
複製代碼

這裏的keys和values、*overflow三個變量在結構體中並無體現,可是在源碼過程當中,一直有爲他們預留位置,因此這裏的示意圖中就展現出來了,keys和values其實8個長度的數組bash

demo

咱們簡單寫個demo,經過go tool 來分析一下底層所對應的函數數據結構

func main() {
	m := make(map[interface{}]interface{}, 16)
	m["111"] = 1
	m["222"] = 2
	m["444"] = 4
	_ = m["444"]
	_, _ = m["444"]
	delete(m, "444")

	for range m {
	}
}
複製代碼
▶ go tool objdump -s "main.main" main | grep CALL
  main.go:4             0x455c74                e8f761fbff              CALL runtime.makemap(SB)                
  main.go:5             0x455ce1                e8da6dfbff              CALL runtime.mapassign(SB)              
  main.go:6             0x455d7b                e8406dfbff              CALL runtime.mapassign(SB)              
  main.go:7             0x455e15                e8a66cfbff              CALL runtime.mapassign(SB)              
  main.go:8             0x455e88                e89363fbff              CALL runtime.mapaccess1(SB)             
  main.go:9             0x455ec4                e84766fbff              CALL runtime.mapaccess2(SB)             
  main.go:10            0x455f00                e85b72fbff              CALL runtime.mapdelete(SB)              
  main.go:12            0x455f28                e804a7ffff              CALL 0x450631                           
  main.go:12            0x455f53                e8b875fbff              CALL runtime.mapiterinit(SB)            
  main.go:12            0x455f75                e88677fbff              CALL runtime.mapiternext(SB)            
  main.go:7             0x455f8f                e81c9cffff              CALL runtime.gcWriteBarrier(SB)         
  main.go:6             0x455f9c                e80f9cffff              CALL runtime.gcWriteBarrier(SB)         
  main.go:5             0x455fa9                e8029cffff              CALL runtime.gcWriteBarrier(SB)         
  main.go:3             0x455fb3                e8f87dffff              CALL runtime.morestack_noctxt(SB) 
複製代碼

初始化

makemap

makemap建立一個hmap結構體,並賦予這個變量一些初始的屬性併發

func makemap(t *maptype, hint int, h *hmap) *hmap {
  // 首先判斷map的大小是否合適
	if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) {
		hint = 0
	}

	// initialize Hmap
  // 初始化hmap結構
	if h == nil {
		h = new(hmap)
	}
  // 生成一個隨機的hash種子
	h.hash0 = fastrand()

	// find size parameter which will hold the requested # of elements
  // 根據hint,也就是map預設的長度,肯定B的大小,以使map的裝載係數在正常範圍內,擴容那塊再細講
	B := uint8(0)
	for overLoadFactor(hint, B) {
		B++
	}
	h.B = B

	// allocate initial hash table
	// if B == 0, the buckets field is allocated lazily later (in mapassign)
	// If hint is large zeroing this memory could take a while.
  // 若是B==0,則賦值的時候進行惰性分配,若是B!=0,則分配對應數量的buckets
	if h.B != 0 {
		var nextOverflow *bmap
		h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
		if nextOverflow != nil {
			h.extra = new(mapextra)
			h.extra.nextOverflow = nextOverflow
		}
	}

	return h
}
複製代碼

##makeBucketArrayapp

makeBucketArray初始化了map所需的buckets,最少分配2^b個bucketsless

func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
	base := bucketShift(b)
	nbuckets := base
	// 若是b,也就是map比較大的狀況,則多分配點數組,給nextOverflow使用
	if b >= 4 {
    // 計算應該多分配的buckets數量
		nbuckets += bucketShift(b - 4)
		sz := t.bucket.size * nbuckets
		up := roundupsize(sz)
		if up != sz {
			nbuckets = up / t.bucket.size
		}
	}
	// 若是不是 dirtyalloc,新分配map空間時,dirtyalloc爲nil
	if dirtyalloc == nil {
    // 申請buckets數組
		buckets = newarray(t.bucket, int(nbuckets))
	} else {
		// dirtyalloc was previously generated by
		// the above newarray(t.bucket, int(nbuckets))
		// but may not be empty.
		buckets = dirtyalloc
		size := t.bucket.size * nbuckets
		if t.bucket.kind&kindNoPointers == 0 {
			memclrHasPointers(buckets, size)
		} else {
			memclrNoHeapPointers(buckets, size)
		}
	}
  // 判斷是否多申請了buckets,多申請的buckets放在nextOverflow裏面以備後用
	if base != nbuckets {
		nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
		last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
		last.setoverflow(t, (*bmap)(buckets))
	}
	return buckets, nextOverflow
}
複製代碼

初始化的過程到此就結束了,比較簡單,就是根據初始化的大小,肯定buckets的數量,並分配內存等dom

查找(mapaccess)

在上面的go tool 分析過程當中能夠發現ide

  • _ = m["444"] 對應 mapaccess1
  • _, _ = m["444"] 對應 mapaccess2

兩個函數的邏輯大體相同,咱們以mapaccess1爲例來分析函數

mapaccess

func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
  // 若是h尚未實例化,或者尚未值,返回零值
	if h == nil || h.count == 0 {
		return unsafe.Pointer(&zeroVal[0])
	}
  // 判斷當前map是否處於 寫 的過程當中,讀寫衝突
	if h.flags&hashWriting != 0 {
		throw("concurrent map read and map write")
	}
  // 根據初始化生產的hash隨機種子hash0,計算key的hash值
	alg := t.key.alg
	hash := alg.hash(key, uintptr(h.hash0))
	m := bucketMask(h.B)
  // 根據key的hash值,計算出對應的bucket的位置,計算過程後面圖示
	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
  // 擴容的過程當中,oldbuckets不爲空,因此這時候,這時候須要判斷,目標bucket是否已經遷移完成了,擴容的時候細講
	if c := h.oldbuckets; c != nil {
		if !h.sameSizeGrow() {
			// There used to be half as many buckets; mask down one more power of two.
			m >>= 1
		}
    // 若是目標bucket在擴容中尚未遷移,則到oldbuckets中找目標bucket
		oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
		if !evacuated(oldb) {
			b = oldb
		}
	}
  // 計算出key的tophash,用於比對
	top := tophash(hash)
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < bucketCnt; i++ {
      // 若是tophash不一致,key確定不一樣,繼續尋找下一個
			if b.tophash[i] != top {
				continue
			}
      // tophash一直,須要判斷key是否一致
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
			if t.indirectkey {
				k = *((*unsafe.Pointer)(k))
			}
      // key也是相同的,則返回對應的value
			if alg.equal(key, k) {
				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
				if t.indirectvalue {
					v = *((*unsafe.Pointer)(v))
				}
				return v
			}
		}
	}
	return unsafe.Pointer(&zeroVal[0])
}
複製代碼

overflow

這個函數就是找bmap的overflow的地址,經過結構圖中能夠看出,找到bmap結構體的最後一個指針佔用的內存單元就是overflow指向的下一個bmap的地址了

func (b *bmap) overflow(t *maptype) *bmap {
	return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize))
}
複製代碼

上面的邏輯比較簡單,可是在這裏有幾個問題須要解決

  1. bucket(bmap結構體)是怎麼肯定的
  2. tophash是怎麼肯定的
  3. key和value的地址爲何是經過偏移來計算的

先放一下buckets和bmap的放大圖

  1. bucket(bmap結構體)是怎麼肯定的

    bucket := hash & bucketMask(h.B)
    b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
    複製代碼

    加入B=5,則說明buckets的數量爲2^5 = 32,則取hash的末5位,來計算出目標bucket的索引,圖中計算出索引爲6,因此,在buckets上偏移6個bucket大小的地址,便可找到對應的bucket

  2. tophash是怎麼肯定的

    func tophash(hash uintptr) uint8 {
    	top := uint8(hash >> (sys.PtrSize*8 - 8))
    	if top < minTopHash {
    		top += minTopHash
    	}
    	return top
    }
    複製代碼

    每一個bucket的tophash數組的長度爲8,因此,這裏直接去hash值的前8位計算出來數值,既是tophash了

  3. key和value的地址爲何是經過偏移來計算的

    k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
    val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
    複製代碼

    根據最開始的數據結構分析和上面的bmap圖示,能夠看出bmap中全部的key是放在一塊兒的,全部的value是放在一塊兒的,dataoffset是tophash[8]所佔用的大小,因此,key所在的地址也就是 b的地址+dataOffset的偏移+對應的索引i*key的大小,同理value是排列在key的後面的

插入

mapassign

func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	if h == nil {
		panic(plainError("assignment to entry in nil map"))
	}
	// map併發讀寫的處理,直接拋異常
	if h.flags&hashWriting != 0 {
		throw("concurrent map writes")
	}
  // 根據map的hash種子 hash0,計算key的hash值
	alg := t.key.alg
	hash := alg.hash(key, uintptr(h.hash0))

	// Set hashWriting after calling alg.hash, since alg.hash may panic,
	// in which case we have not actually done a write.
	h.flags |= hashWriting
  // 若是map沒有buckets,就分配(make(map)不指定map長度的時候就會惰性分配buckets)
	if h.buckets == nil {
		h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
	}

again:
  // 根據計算出的hash值,來肯定應該插入的bucket在buckets中的索引
	bucket := hash & bucketMask(h.B)
  // 判斷是否在擴容map,growWork是來完成擴容操做的
	if h.growing() {
		growWork(t, h, bucket)
	}
  // 確認bucket的地址
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
  // 根據計算出hash二進制前八位的值,做爲tophash使用
	top := tophash(hash)

	var inserti *uint8
	var insertk unsafe.Pointer
	var val unsafe.Pointer
	for {
		for i := uintptr(0); i < bucketCnt; i++ {
      // 循環遍歷tophash數組,若是數組的索引位置爲空,先拿過來使用
			if b.tophash[i] != top {
				if b.tophash[i] == empty && inserti == nil {
					inserti = &b.tophash[i]
					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
					val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
				}
				continue
			}
      // 找到了tophash數組中找到了當前key的tophash一致的狀況
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
      // 若是key是指針,獲取指針對應的數據
			if t.indirectkey {
				k = *((*unsafe.Pointer)(k))
			}
      // 判斷這兩個key是否相同,不一樣繼續尋找
			if !alg.equal(key, k) {
				continue
			}
			// already have a mapping for key. Update it.
			if t.needkeyupdate {
				typedmemmove(t.key, k, key)
			}
      // 根據i找到value應該存放的位置,能夠結合結構圖中bmap的數據結構來理解
			val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
			goto done
		}
    // buckets中沒有找到空餘的位置或者相同的key,則到overflow中查找
		ovf := b.overflow(t)
		if ovf == nil {
			break
		}
		b = ovf
	}

	// Did not find mapping for key. Allocate new cell & add entry.

	// If we hit the max load factor or we have too many overflow buckets,
	// and we're not already in the middle of growing, start growing.
  // 判斷是否須要擴容
	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
		hashGrow(t, h)
		goto again // Growing the table invalidates everything, so try again
	}
	// inerti==nil,表示map的buckets都滿了,則須要新加一個overflow掛載到map和對應的bmap下
	if inserti == nil {
		// all current buckets are full, allocate a new one.
		newb := h.newoverflow(t, b)
		inserti = &newb.tophash[0]
		insertk = add(unsafe.Pointer(newb), dataOffset)
		val = add(insertk, bucketCnt*uintptr(t.keysize))
	}

	// store new key/value at insert position
  // 存儲key value到指定的位置
	if t.indirectkey {
		kmem := newobject(t.key)
		*(*unsafe.Pointer)(insertk) = kmem
		insertk = kmem
	}
	if t.indirectvalue {
		vmem := newobject(t.elem)
		*(*unsafe.Pointer)(val) = vmem
	}
	typedmemmove(t.key, insertk, key)
	*inserti = top
	h.count++

done:
	if h.flags&hashWriting == 0 {
		throw("concurrent map writes")
	}
  // 修改map的flags
	h.flags &^= hashWriting
	if t.indirectvalue {
		val = *((*unsafe.Pointer)(val))
	}
	return val
}
複製代碼

setoverflow

func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap {
	var ovf *bmap
  // 先去找一下預先分配的有沒有剩餘的overflow
	if h.extra != nil && h.extra.nextOverflow != nil {
		// We have preallocated overflow buckets available.
		// See makeBucketArray for more details.
    // 預先分配的有,直接使用預先分配的,而後更新一下 下一個能夠用overflow => nextOverflow
		ovf = h.extra.nextOverflow
		if ovf.overflow(t) == nil {
			// We're not at the end of the preallocated overflow buckets. Bump the pointer.
			h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.bucketsize)))
		} else {
			// This is the last preallocated overflow bucket.
			// Reset the overflow pointer on this bucket,
			// which was set to a non-nil sentinel value.
			ovf.setoverflow(t, nil)
			h.extra.nextOverflow = nil
		}
	} else {
		ovf = (*bmap)(newobject(t.bucket))
	}
  // 增長noverflow
	h.incrnoverflow()
	if t.bucket.kind&kindNoPointers != 0 {
		h.createOverflow()
		*h.extra.overflow = append(*h.extra.overflow, ovf)
	}
  // 把當前overflow,掛載到bmap的overflow鏈表後面
	b.setoverflow(t, ovf)
	return ovf
}
複製代碼

overflow指向的就是一個bmap結構,而bmap結構的最後一個地址,存儲的是overflow的地址,經過bmap.overflow能夠將bmap的全部overflow串聯起來,hmap.extra.nextOverflow也是同樣的邏輯

擴容

mapassign函數中能夠看到,擴容發生的狀況有兩種

overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)
複製代碼
  1. 超過設定的負載值
  2. 有太多的overflow

先來看一下這兩個函數

overLoadFactor

func overLoadFactor(count int, B uint8) bool {
  // loadFactorNum = 13; loadFactorDen = 2
	return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}
複製代碼

uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen) 能夠簡化爲 count / (2^B) > 6.5, 這個6.5即是表明loadFactor的負載係數

##tooManyOverflowBuckets

func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
	// If the threshold is too low, we do extraneous work.
	// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
	// "too many" means (approximately) as many overflow buckets as regular buckets.
	// See incrnoverflow for more details.
	if B > 15 {
		B = 15
	}
	// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
	return noverflow >= uint16(1)<<(B&15)
}
複製代碼

經過判斷noverflow的數量來判斷overflow是否太多

咱們理解一下這兩種狀況擴容的緣由

  1. 超過設定的負載值

    根據key查找的過程當中,根據末B位肯定bucket,高8位肯定tophash,可是查找tophash的過程當中,是須要遍歷整個bucket的,因此,最優的狀況是每一個bucket只存儲一個key,這樣就達到了hash的O(1)的查找效率,可是空間卻大大的浪費了;若是全部的key都存儲到了一個bucket裏面面,就退變成了鏈表,查找效率就變成了O(n),因此裝載係數就是爲了平衡查找效率和存儲空間的,當裝載係數過大,就須要增長bucket了,來提升查找效率,即增量擴容

  2. 有太多的overflow

    當bucket的空位所有填滿的時候,裝載係數就達到了8,爲何還會有tooManyOverflowBuckets的判斷呢,map不只有增長還有刪除的操做,當某一個bucket的空位填滿後,開始填充到overflow裏面,這時候再刪除bucket裏面的數據,其實整個過程頗有可能並無觸發 超過負載擴容機制的,(由於有較多的buckets),可是查找overflow的數據,就首先要遍歷bucket的數據,這個就是無用功了,查找效率就低了,這時候須要不增長bucket數量的擴容,也就是等量擴容

擴容的工做是由hashGrow開始的,可是真正進行遷移工做的是evacuate, 由growWork進行d調用;在每一次的maassign和mapdelete的時候,會判斷這個map是否正在進行擴容操做,若是是的,就遷移當前的bucket;因此,map的擴容並非一蹴而就的,而是一個按部就班的過程

hashGrow

func hashGrow(t *maptype, h *hmap) {
	// If we've hit the load factor, get bigger.
	// Otherwise, there are too many overflow buckets,
	// so keep the same number of buckets and "grow" laterally.
  // 判斷是等量擴容仍是增量擴容
	bigger := uint8(1)
	if !overLoadFactor(h.count+1, h.B) {
		bigger = 0
		h.flags |= sameSizeGrow
	}
  // 爲map根據新的B(h.B+bigger爲新的h.B)從新分配新的buckets和overflow
	oldbuckets := h.buckets
	newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)

	flags := h.flags &^ (iterator | oldIterator)
	if h.flags&iterator != 0 {
		flags |= oldIterator
	}
	// commit the grow (atomic wrt gc)
  // 更新hmap相關的屬性
	h.B += bigger
	h.flags = flags
	h.oldbuckets = oldbuckets
	h.buckets = newbuckets
	h.nevacuate = 0
	h.noverflow = 0
	// 將老的map的extra和nextOverflow更新到新的map結構下面
	if h.extra != nil && h.extra.overflow != nil {
		// Promote current overflow buckets to the old generation.
		if h.extra.oldoverflow != nil {
			throw("oldoverflow is not nil")
		}
		h.extra.oldoverflow = h.extra.overflow
		h.extra.overflow = nil
	}
	if nextOverflow != nil {
		if h.extra == nil {
			h.extra = new(mapextra)
		}
		h.extra.nextOverflow = nextOverflow
	}

	// the actual copying of the hash table data is done incrementally
	// by growWork() and evacuate().
}
複製代碼

hashGrow 這個前菜已經準備完成了,接下來就交給growWorkevacuate兩個函數來完成的

growWork

func growWork(t *maptype, h *hmap, bucket uintptr) {
	// make sure we evacuate the oldbucket corresponding
	// to the bucket we're about to use
	evacuate(t, h, bucket&h.oldbucketmask())

	// evacuate one more oldbucket to make progress on growing
	if h.growing() {
		evacuate(t, h, h.nevacuate)
	}
}
複製代碼

###evacuate

講hmap中的一個bucket搬移到新的buckets中,老的bucket裏key與新的buckets中位置的對應,一樣參考map的查找過程

這裏如何判斷這個bucket是否已經搬移過了呢,主要就是依據evacuated函數來判斷

func evacuated(b *bmap) bool {
	h := b.tophash[0]
	return h > empty && h < minTopHash
}
複製代碼

看了源碼就發現原理很簡單,就是對tophash[0]值的判斷,那麼確定是在搬移以後設置的這個值,咱們經過evacuate函數l哎一探究竟吧

func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
	b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
	newbit := h.noldbuckets()
  // 判斷是否搬移過
	if !evacuated(b) {
		// TODO: reuse overflow buckets instead of using new ones, if there
		// is no iterator using the old buckets. (If !oldIterator.)

		// xy contains the x and y (low and high) evacuation destinations.
    // 吧bucket原先對應的索引賦值給x
		var xy [2]evacDst
		x := &xy[0]
		x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
		x.k = add(unsafe.Pointer(x.b), dataOffset)
		x.v = add(x.k, bucketCnt*uintptr(t.keysize))
		// 若是是增量擴容,擴容後的bucket有變,假如以B=5爲例,B+1= 6,這時候去倒數6位計算bucket的索引,可是倒數第6位只能是0或者1,也就是說索引只能是,x或y(x+newbit),這裏計算出來y,以備後用
		if !h.sameSizeGrow() {
			// Only calculate y pointers if we're growing bigger.
			// Otherwise GC can see bad pointers.
			y := &xy[1]
			y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
			y.k = add(unsafe.Pointer(y.b), dataOffset)
			y.v = add(y.k, bucketCnt*uintptr(t.keysize))
		}
		// 進行搬移
		for ; b != nil; b = b.overflow(t) {
			k := add(unsafe.Pointer(b), dataOffset)
			v := add(k, bucketCnt*uintptr(t.keysize))
			for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
				top := b.tophash[i]
        // 空的跳過
				if top == empty {
					b.tophash[i] = evacuatedEmpty
					continue
				}
				if top < minTopHash {
					throw("bad map state")
				}
				k2 := k
				if t.indirectkey {
					k2 = *((*unsafe.Pointer)(k2))
				}
				var useY uint8
				if !h.sameSizeGrow() {
					// Compute hash to make our evacuation decision (whether we need
					// to send this key/value to bucket x or bucket y).
          // 判斷hash計算出來,是使用x仍是y,等量擴容是使用x
					hash := t.key.alg.hash(k2, uintptr(h.hash0))
					if h.flags&iterator != 0 && !t.reflexivekey && !t.key.alg.equal(k2, k2) {
						// If key != key (NaNs), then the hash could be (and probably
						// will be) entirely different from the old hash. Moreover,
						// it isn't reproducible. Reproducibility is required in the
						// presence of iterators, as our evacuation decision must
						// match whatever decision the iterator made.
						// Fortunately, we have the freedom to send these keys either
						// way. Also, tophash is meaningless for these kinds of keys.
						// We let the low bit of tophash drive the evacuation decision.
						// We recompute a new random tophash for the next level so
						// these keys will get evenly distributed across all buckets
						// after multiple grows.
						useY = top & 1
						top = tophash(hash)
					} else {
						if hash&newbit != 0 {
							useY = 1
						}
					}
				}

				if evacuatedX+1 != evacuatedY {
					throw("bad evacuatedN")
				}

				b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
				dst := &xy[useY]                 // evacuation destination
				// 若是目標的bucket已經滿了,則新建overflow,掛載到bucket上,並使用這個overflow
				if dst.i == bucketCnt {
					dst.b = h.newoverflow(t, dst.b)
					dst.i = 0
					dst.k = add(unsafe.Pointer(dst.b), dataOffset)
					dst.v = add(dst.k, bucketCnt*uintptr(t.keysize))
				}
        // 拷貝key value,設置tophash數組的對應索引的值
				dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
				if t.indirectkey {
					*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
				} else {
					typedmemmove(t.key, dst.k, k) // copy value
				}
				if t.indirectvalue {
					*(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v)
				} else {
					typedmemmove(t.elem, dst.v, v)
				}
				dst.i++
				// These updates might push these pointers past the end of the
				// key or value arrays. That's ok, as we have the overflow pointer
				// at the end of the bucket to protect against pointing past the
				// end of the bucket.
				dst.k = add(dst.k, uintptr(t.keysize))
				dst.v = add(dst.v, uintptr(t.valuesize))
			}
		}
		// Unlink the overflow buckets & clear key/value to help GC.
		if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 {
			b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
			// Preserve b.tophash because the evacuation
			// state is maintained there.
			ptr := add(b, dataOffset)
			n := uintptr(t.bucketsize) - dataOffset
			memclrHasPointers(ptr, n)
		}
	}

	if oldbucket == h.nevacuate {
		advanceEvacuationMark(h, t, newbit)
	}
}
複製代碼

擴容是逐步進行的,一次搬運一個bucket

咱們以原先的B=5爲例,如今增量擴容後B=6,可是hash的倒數第6位只能是0或1,也就是說,若是原先計算出來的bucket索引爲6的話,即 00110,那麼新的bucket對應的索引只能是 100110(6+2^5)或 000110(6),x對應的就是6,y對應的就是(6+2^5);若是是等量擴容,那麼索引確定就是不變的,這時候就不須要y了

找到對應的新的bucket以後,按順序依次存放就ok了

刪除

mapdelete

刪除的邏輯比較簡單,根據key查找,找到就清空key和value及tophash

func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
	if h == nil || h.count == 0 {
		return
	}
  // 讀寫衝突
	if h.flags&hashWriting != 0 {
		throw("concurrent map writes")
	}
	// 下面一大片的計算hash,查找bucket,查到bucket裏面的key,邏輯同樣,就不重複了
	alg := t.key.alg
	hash := alg.hash(key, uintptr(h.hash0))

	// Set hashWriting after calling alg.hash, since alg.hash may panic,
	// in which case we have not actually done a write (delete).
	h.flags |= hashWriting

	bucket := hash & bucketMask(h.B)
	if h.growing() {
		growWork(t, h, bucket)
	}
	b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
	top := tophash(hash)
search:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < bucketCnt; i++ {
			if b.tophash[i] != top {
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
			k2 := k
			if t.indirectkey {
				k2 = *((*unsafe.Pointer)(k2))
			}
			if !alg.equal(key, k2) {
				continue
			}
			// Only clear key if there are pointers in it.
      // 這裏找到了key,若是key是指針,設爲nil,不然清空key對應內存的數據
			if t.indirectkey {
				*(*unsafe.Pointer)(k) = nil
			} else if t.key.kind&kindNoPointers == 0 {
				memclrHasPointers(k, t.key.size)
			}
      // 同理刪除v
			v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
			if t.indirectvalue {
				*(*unsafe.Pointer)(v) = nil
			} else if t.elem.kind&kindNoPointers == 0 {
				memclrHasPointers(v, t.elem.size)
			} else {
				memclrNoHeapPointers(v, t.elem.size)
			}
      // 把tophash設置爲0,並更新count屬性
			b.tophash[i] = empty
			h.count--
			break search
		}
	}

	if h.flags&hashWriting == 0 {
		throw("concurrent map writes")
	}
	h.flags &^= hashWriting
}
複製代碼

遍歷

按通常的思惟來考慮,遍歷值須要遍歷buckets數組裏面的每一個bucket以及bucket下掛的overflow鏈表便可,可是map存在擴容的狀況,這樣就會致使遍歷的難度增大了,咱們看一下go是怎麼實現的

根據go tool 的分析,咱們能夠簡單看一下遍歷時的流程信息

mapiterinit

func mapiterinit(t *maptype, h *hmap, it *hiter) {
	if h == nil || h.count == 0 {
		return
	}

	if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 {
		throw("hash_iter size incorrect") // see cmd/compile/internal/gc/reflect.go
	}
  // 設置iter的屬性
	it.t = t
	it.h = h

	// grab snapshot of bucket state
	it.B = h.B
	it.buckets = h.buckets
	if t.bucket.kind&kindNoPointers != 0 {
		// Allocate the current slice and remember pointers to both current and old.
		// This preserves all relevant overflow buckets alive even if
		// the table grows and/or overflow buckets are added to the table
		// while we are iterating.
		h.createOverflow()
		it.overflow = h.extra.overflow
		it.oldoverflow = h.extra.oldoverflow
	}

	// decide where to start
  // 隨機生成一個種子,並根據這個隨機種子計算出startBucket和offset,保證遍歷的隨機性
	r := uintptr(fastrand())
	if h.B > 31-bucketCntBits {
		r += uintptr(fastrand()) << 31
	}
	it.startBucket = r & bucketMask(h.B)
	it.offset = uint8(r >> h.B & (bucketCnt - 1))

	// iterator state
	it.bucket = it.startBucket

	// Remember we have an iterator.
	// Can run concurrently with another mapiterinit().
	if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
		atomic.Or8(&h.flags, iterator|oldIterator)
	}
	// 開始遍歷
	mapiternext(it)
}
複製代碼

mapiternext

func mapiternext(it *hiter) {
	h := it.h
	if raceenabled {
		callerpc := getcallerpc()
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
	}
	if h.flags&hashWriting != 0 {
		throw("concurrent map iteration and map write")
	}
	t := it.t
	bucket := it.bucket
	b := it.bptr
	i := it.i
	checkBucket := it.checkBucket
	alg := t.key.alg

next:
  // b==nil說明bucket.overflow鏈表已經遍歷完成了,遍歷下一個bucket
	if b == nil {
    // 遍歷到了開始的bucket,並且startBucket被遍歷過了,則說明整個map遍歷完成了
		if bucket == it.startBucket && it.wrapped {
			// end of iteration
			it.key = nil
			it.value = nil
			return
		}
    // 若是hmap正在擴容,則判斷當前遍歷的bucket是否搬移完了,搬移完了,使用新得bucket,不然使用oldbucket
		if h.growing() && it.B == h.B {
			// Iterator was started in the middle of a grow, and the grow isn't done yet.
			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
			// bucket hasn't been evacuated) then we need to iterate through the old
			// bucket and only return the ones that will be migrated to this bucket.
			oldbucket := bucket & it.h.oldbucketmask()
			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
			if !evacuated(b) {
				checkBucket = bucket
			} else {
				b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
				checkBucket = noCheck
			}
		} else {
			b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
			checkBucket = noCheck
		}
		bucket++
    // 遍歷到了數組末尾,從數組頭繼續遍歷
		if bucket == bucketShift(it.B) {
			bucket = 0
			it.wrapped = true
		}
		i = 0
	}
  // 遍歷當前bucket或者bucket.overflow裏面的數據
	for ; i < bucketCnt; i++ {
    // 經過offset與i,肯定正在遍歷的bucket的tophash的索引
		offi := (i + it.offset) & (bucketCnt - 1)
		if b.tophash[offi] == empty || b.tophash[offi] == evacuatedEmpty {
			continue
		}
    // 根據偏移量i,肯定key和value的地址
		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
		if t.indirectkey {
			k = *((*unsafe.Pointer)(k))
		}
		v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize))
		if checkBucket != noCheck && !h.sameSizeGrow() {
      // 說明增量擴容中,須要進一步判斷
			// Special case: iterator was started during a grow to a larger size
			// and the grow is not done yet. We're working on a bucket whose
			// oldbucket has not been evacuated yet. Or at least, it wasn't
			// evacuated when we started the bucket. So we're iterating
			// through the oldbucket, skipping any keys that will go
			// to the other new bucket (each oldbucket expands to two
			// buckets during a grow).
			if t.reflexivekey || alg.equal(k, k) {
        // 數據尚未從oldbucket遷移到新的bucket裏面,判斷這個key從新計算後是否與oldbucket的索引一致,不一致則跳過
				// If the item in the oldbucket is not destined for
				// the current new bucket in the iteration, skip it.
				hash := alg.hash(k, uintptr(h.hash0))
				if hash&bucketMask(it.B) != checkBucket {
					continue
				}
			} else {
				// Hash isn't repeatable if k != k (NaNs). We need a
				// repeatable and randomish choice of which direction
				// to send NaNs during evacuation. We'll use the low
				// bit of tophash to decide which way NaNs go.
				// NOTE: this case is why we need two evacuate tophash
				// values, evacuatedX and evacuatedY, that differ in
				// their low bit.
				if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
					continue
				}
			}
		}
		if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
			!(t.reflexivekey || alg.equal(k, k)) {
      // 這裏的數據不是正在擴容中的數據,能夠直接使用
			// This is the golden data, we can return it.
			// OR
			// key!=key, so the entry can't be deleted or updated, so we can just return it.
			// That's lucky for us because when key!=key we can't look it up successfully.
			it.key = k
			if t.indirectvalue {
				v = *((*unsafe.Pointer)(v))
			}
			it.value = v
		} else {
			// The hash table has grown since the iterator was started.
			// The golden data for this key is now somewhere else.
			// Check the current hash table for the data.
			// This code handles the case where the key
			// has been deleted, updated, or deleted and reinserted.
			// NOTE: we need to regrab the key as it has potentially been
			// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
      // 在遍歷開始以後,這個map進行了擴容,數據可能不正確,從新查找獲取一下
			rk, rv := mapaccessK(t, h, k)
			if rk == nil {
				continue // key has been deleted
			}
			it.key = rk
			it.value = rv
		}
		it.bucket = bucket
		if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
			it.bptr = b
		}
		it.i = i + 1
		it.checkBucket = checkBucket
		return
	}
  // 遍歷bucket.overflow鏈表
	b = b.overflow(t)
	i = 0
	goto next
}
複製代碼

總體思路以下:

  1. 首先從buckets數組中,隨機肯定一個索引,做爲startBucket,而後肯定offset偏移量,做爲起始key的地址
  2. 遍歷當前bucket及bucket.overflow,判斷當前bucket是否正在擴容中,若是是則跳轉到3,不然跳轉到4
  3. 加入原先的buckets爲0,1,那麼擴容後的新的buckets爲0,1,2,3,此時咱們遍歷到了buckets[0], 發現這個bucket正在擴容,那麼找到bucket[0]所對應的oldbuckets[0],遍歷裏面的key,這時候是遍歷全部的嗎?固然不是,而是僅僅遍歷那些key通過hash,能夠散列到bucket[0]裏面的部分key;同理,當遍歷到bucket[2]的時候,發現bucket正在擴容,找到oldbuckets[0],而後遍歷裏面能夠散列到bucket[2]的那些key
  4. 遍歷當前這個bucket便可
  5. 繼續遍歷bucket下面的overflow鏈表
  6. 若是遍歷到了startBucket,說明遍歷完了,結束遍歷

參考文章

相關文章
相關標籤/搜索