未經做者容許,禁止轉載: BooTurbo https://www.cnblogs.com/booturbo/p/14124207.htmlhtml
Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Machine Learningnode
翻譯書名:計算機科學和機器學習中的數學——代數,拓撲,微積分及優化理論ios
目錄git
1 Introduction算法
序言app
2 Groups, Rings, and Fields框架
羣,環,域dom
2.1 Groups, Subgroups, Cosets機器學習
羣,子羣,陪集ide
2.2 Cyclic Groups
循環羣
2.3 Rings and Fields
環,域
Ⅰ Linear Algebra
線性代數
3 Vector Spaces, Bases, Linear Maps
向量空間,基,線性變換
3.1 Motivations: Linear Combinations, Linear Independence, Rank
動機:線性組合,線性無關,秩
3.2 Vector Spaces
向量空間
3.3 Indexed Families; the Sum Notation
索引族,求和符號
3.4 Linear Independence, Subspaces
線性無關,子空間
3.5 Bases of a Vector Space
向量空間的基
3.6 Matrices
矩陣
3.7 Linear Maps
線性變換
3.8 Quotient Spaces
商空間
3.9 Linear Forms and the Dual Space
線性泛函,對偶空間
4 Matrices and Linear Maps
矩陣與線性變換
4.1 Representation of Linear Maps by Matrices
以矩陣形式表示線性變換
4.2 Composition of Linear Maps and Matrix Multiplication
線性變換與矩陣乘法的組合
4.3 Change of Basis Matrix
基變換矩陣
4.4 The Effect of a Change of Bases on Matrices
基變換對矩陣的影響
5 Haar Bases, Haar Wavelets, Hadamard Matrices
哈爾基,哈爾小波,阿達馬矩陣
5.1 Introduction to Signal Compression Using Haar Wavelets
使用哈爾小波進行信號壓縮的相關介紹
5.2 Haar Matrices, Scaling Properties of Haar Wavelets
哈爾矩陣,哈爾小波的尺度屬性
5.3 Kronecker Product Construction of Haar Matrices
哈爾矩陣的克羅內克積構造
5.4 Multiresolution Signal Analysis with Haar Bases
使用哈爾基進行多分辨率信號分析
5.5 Haar Transform for Digital Images
應用於數字圖像的哈爾變換
5.6 Hadamard Matrices
阿達馬矩陣
6 Direct Sums
直和
6.1 Sums, Direct Sums, Direct Products
求和,直和,直積
6.2 The Rank-Nullity Theorem; Grassmann's Relation
秩-零化度定理,格拉斯曼關係
7 Determinants
行列式
7.1 Permutations, Signature of a Permutation
排列,排列的符號
7.2 Alternating Multilinear Maps
交替多重線性映射
7.3 Definition of a Determinant
行列式的定義
7.4 Inverse Matrices and Determinants
逆矩陣與行列式
7.5 Systems of Linear Equations and Determinants
線性方程組與行列式
7.6 Determinant of a Linear Map
線性映射的行列式
7.7 The Cayley-Hamilton Theorem
凱萊-哈密頓定理
7.8 Permanents
積和式
7.9 Summary
總結
7.10 Further Readings
深刻閱讀
7.11 Problems
問題
8 Gaussian Elimination, LU, Cholesky, Echelon Form
高斯消元法,LU分解法,Cholesky分解,階梯形矩陣
8.1 Motivating Example: Curve Interpolation
動機示例:曲線插值
8.2 Gaussian Elimination
高斯消元法
8.3 Elementary Matrices and Row Operations
初等矩陣與行運算
8.4 LU-Factorization
LU-分解因式
8.5 PA = LU Factorization
PA等於LU分解因式
8.6 Proof of Theorem 8.5
定理8.5的證實
8.7 Dealing with Roundoff Errors; Pivoting Strategies
處理舍入偏差,主元消去法
8.8 Gaussian Elimination of Tridiagonal Matrices
三對角矩陣的高斯消元
8.9 SPD Matrices and the Cholesky Decomposition
對稱正定矩陣與Cholesky 分解
8.10 Reduced Row Echelon Form
簡化行階梯形矩陣
8.11 RREF, Free Variables, Homogeneous Systems
簡化行階梯形矩陣,自由變量,齊次線性方程組
8.12 Uniqueness of RREF
簡化行階梯形矩陣的獨特性
8.13 Solving Linear Systems Using RREF
使用RREF求解線性方程組
8.14 Elementary Matrices and Columns Operations
初等矩陣與列運算
8.15 Transvections and Dilatations
錯切與膨脹
9 Vector Norms and Matrix Norms
向量範數和矩陣範數
9.1 Normed Vector Spaces
賦範向量空間
9.2 Matrix Norms
矩陣範數
9.3 Subordinate Norms
從屬範數
9.4 Inequalities Involving Subordinate Norms
從屬範數相關的不等式
9.5 Condition Numbers of Matrices
矩陣的條件數
9.6 An Application of Norms: Inconsistent Linear Systems
範數的應用之一:不相容線性方程組
9.7 Limits of Sequences and Series
數列與級數的極限
9.8 The Matrix Exponential
矩陣指數
10 Iterative Methods for Solving Linear Systems
用於求解線性方程組的迭代法
10.1 Convergence of Sequences of Vectors and Matrices
向量和矩陣序列的收斂
10.2 Convergence of Iterative Methods
迭代法的收斂
10.3 Methods of Jacobi, Gauss-Seidel, and Relaxation
雅可比法,高斯-賽德爾迭代法,鬆弛法
10.4 Convergence of the Methods
這些方法的收斂
10.5 Convergence Methods for Tridiagonal Matrices
三對角矩陣的收斂法
11 The Dual Space and Duality
對偶空間及對偶
11.1 The Dual Space E* and Linear Forms
對偶空間和線性泛函
11.2 Pairing and Duality Between E and E*
E 和 E* 之間的配對與對偶
11.3 The Duality Theorem and Some Consequences
對偶定理和一些結論
11.4 The Bidual and Canonical Pairings
雙對偶和標準配對
11.5 Hyperplanes and Linear Forms
超平面和線性泛函
11.6 Transpose of a Linear Map and of a Matrix
線性映射的轉置及矩陣的轉置
11.7 Properties of the Double Transpose
雙重轉置的屬性
11.8 The Four Fundamental Subspaces
四個基本子空間
12 Euclidean Spaces
歐幾里得空間
12.1 Inner Products, Euclidean Spaces
內積,歐幾里得空間
12.2 Orthogonality and Duality in Euclidean Spaces
歐幾里得空間中的正交和對偶
12.3 Adjoint of a Linear Map
線性映射的伴隨
12.4 Existence and Construction of Orthonormal Bases
標準正交基的存在與構造
12.5 Linear Isometries (Orthogonal Transformations)
線性等距同構(正交變換)
12.6 The Orthogonal Group, Orthogonal Matrices
正交羣,正交矩陣
12.7 The Rodrigues Formula
羅德里格公式
12.8 QR-Decomposition for Invertible Matrices
用於可逆矩陣的QR分解
12.9 Some Applications of Euclidean Geometry
歐幾里得幾何的一些應用
13 QR-Decomposition for Arbitrary Matrices
用於任意矩陣的QR分解
13.1 Orthogonal Reflections
正交映射
13.2 QR-Decomposition Using Householder Matrices
使用豪斯霍爾德矩陣進行QR分解
14 Hermitian Spaces
埃爾米特空間
14.1 Hermitian Spaces, Pre-Hilbert Spaces
埃爾米特空間,準希爾伯特空間
14.2 Orthogonality, Duality, Adjoint of a Linear Map
線性映射的正交,對偶,伴隨
14.3 Linear Isometries (Also Called Unitary Transformations)
線性等距同構(又稱做幺正變換)
14.4 The Unitary Group, Unitary Matrices
酉羣,酉矩陣(幺正矩陣)
14.5 Hermitian Reflections and QR-Decomposition
埃爾米特映射和QR分解
14.6 Orthogonal Projections and Involutions
正交投影與對合
14.7 Dual Norms
對偶範數
15 Eigenvectors and Eigenvalues
特徵向量和特徵值
15.1 Eigenvectors and Eigenvalues of a Linear Map
線性變換的特徵向量和特徵值
15.2 Reduction to Upper Triangular Form
簡化成上三角形
15.3 Location of Eigenvalues
特徵值的位置
15.4 Conditioning of Eigenvalue Problems
特徵值問題的調節
15.5 Eigenvalues of the Matrix Exponential
矩陣指數的特徵值
16 Unit Quaternions and Rotations in SO(3)
SO(3)中的單位四元數和旋轉
16.1 The Group SU(2) and the Skew Field H of Quaternions
SU(2)羣 和 四元數的除環H
16.2 Representation of Rotation in SO(3) By Quaternions in SU(2)
以SU(2)中的四元數來表示SO(3)中的旋轉
16.3 Matrix Representation of the Rotation rq
旋轉rq 的矩陣表示
16.4 An Algorithm to Find a Quaternion Representing a Rotation
一種找出一個四元數來表示旋轉的算法
16.5 The Exponential Map exp : su(2) → SU(2)
指數映射exp: su(2) → SU(2)
16.6 Quaternion Interpolation
四元數插值
16.7 Nonexistence of a 「Nice」 Section from SO(3) to SU(2)
在SO(3)和SU(2)之間不存在優選
17 Spectral Theorems
譜定理
17.1 Introduction
介紹
17.2 Normal Linear Maps: Eigenvalues and Eigenvectors
正規線性映射:特徵值和特徵向量
17.3 Spectral Theorem for Normal Linear Maps
用於正規線性映射的譜定理
17.4 Self-Adjoint and Other Special Linear Maps
自伴隨和其餘特殊線性映射
17.5 Normal and Other Special Matrices
正規算子和其餘特殊矩陣
17.6 Rayleigh–Ritz Theorems and Eigenvalue Interlacing
瑞利里茲定理和特徵值交錯
17.7 The Courant–Fischer Theorem; Perturbation Results
最大最小定理;攝動理論
18 Computing Eigenvalues and Eigenvectors
計算特徵值和特徵向量
18.1 The Basic QR Algorithm
基本QR算法
18.2 Hessenberg Matrices
黑森貝格矩陣
18.3 Making the QR Method More Efficient Using Shifts
使用移位使QR方法更高效
18.4 Krylov Subspaces; Arnoldi Iteration
Krylov子空間;Arnoldi迭代法
18.5 GMRES
廣義最小殘量方法
18.6 The Hermitian Case; Lanczos Iteration
埃爾米特情形;蘭喬斯迭代法
18.7 Power Methods
冪迭代算法
19 Introduction to The Finite Elements Method
介紹有限元方法
19.1 A One-Dimensional Problem: Bending of a Beam
一維問題:梁彎曲
19.2 A Two-Dimensional Problem: An Elastic Membrane
二維問題:彈性膜
19.3 Time-Dependent Boundary Problems
時間依賴邊界問題
20 Graphs and Graph Laplacians; Basic Facts
圖和圖拉普拉斯;基本事實
20.1 Directed Graphs, Undirected Graphs, Weighted Graphs
有向圖,無向圖,加權圖
20.2 Laplacian Matrices of Graphs
圖的拉普拉斯矩陣
20.3 Normalized Laplacian Matrices of Graphs
圖的歸一化拉普拉斯矩陣
20.4 Graph Clustering Using Normalized Cuts
使用歸一化割進行圖聚類
21 Spectral Graph Drawing
譜圖繪製
21.1 Graph Drawing and Energy Minimization
圖繪製和能量最小化
21.2 Examples of Graph Drawings
圖繪製的示例
22 Singular Value Decomposition and Polar Form
奇異值分解和極式
22.1 Properties of f* ◦ f
f* ◦ f 的性質
22.2 Singular Value Decomposition for Square Matrices
用於方塊矩陣的奇異值分解
22.3 Polar Form for Square Matrices
方塊矩陣的極式
22.4 Singular Value Decomposition for Rectangular Matrices
長方陣的奇異值分解
22.5 Ky Fan Norms and Schatten Norms
Ky Fan 範數和 Schatten範數
23 Applications of SVD and Pseudo-Inverses
奇異值分解和僞逆的應用
23.1 Least Squares Problems and the Pseudo-Inverse
最小二乘問題和僞逆
23.2 Properties of the Pseudo-Inverse
僞逆的性質
23.3 Data Compression and SVD
數據壓縮和奇異值分解
23.4 Principal Components Analysis (PCA)
主成分分析
23.5 Best Affine Approximation
最佳仿射逼近
II Affine and Projective Geometry
仿射與射影幾何
24 Basics of Affine Geometry
仿射幾何基礎
24.1 Affine Spaces
仿射空間
24.2 Examples of Affine Spaces
仿射空間示例
24.3 Chasles’s Identity
查理特徵(定理)
24.4 Affine Combinations, Barycenters
仿射組合,質心
24.5 Affine Subspaces
仿射子空間
24.6 Affine Independence and Affine Frames
仿射無關性 和 仿射標架
24.7 Affine Maps
仿射映射
24.8 Affine Groups
仿射羣
24.9 Affine Geometry: A Glimpse
仿射幾何學一覽
24.10 Affine Hyperplanes
仿射超平面
24.11 Intersection of Affine Spaces
交叉仿射空間
25 Embedding an Affine Space in a Vector Space
在向量空間中嵌入仿射空間
25.1 The 「Hat Construction,」 or Homogenizing
帽構造 或 均質化
25.2 Affine Frames of E and Bases of Ê
E的仿射標架和 Ê的基
25.3 Another Construction of Ê
Ê 的另外一種構造
25.4 Extending Affine Maps to Linear Maps
將仿射映射拓展到線性映射中
26 Basics of Projective Geometry
射影幾何基礎
26.1 Why Projective Spaces?
爲何是射影空間
26.2 Projective Spaces
射影空間
26.3 Projective Subspaces
射影子空間
26.4 Projective Frames
射影框架(座標系)
26.5 Projective Maps
射影變換
26.6 Finding a Homography Between Two Projective Frames
在兩個射影座標系之間找出一個單應性矩陣
26.7 Affine Patches
仿射快
26.8 Projective Completion of an Affine Space
仿射空間的射影閉合
26.9 Making Good Use of Hyperplanes at Infinity
善於利用無限遠超平面
26.10 The Cross-Ratio
交比
26.11 Fixed Points of Homographies and Homologies
單應性和透射的不動點
26.12 Duality in Projective Geometry
射影幾何中的對偶
26.13 Cross-Ratios of Hyperplanes
超平面的交比
26.14 Complexification of a Real Projective Space
復化實射影空間
26.15 Similarity Structures on a Projective Space
射影空間上的類似結構
26.16 Some Applications of Projective Geometry
射影幾何的一些應用
III The Geometry of Bilinear Forms
雙線性型幾何學
27 The Cartan–Dieudonné Theorem
嘉當-迪厄多內定理
27.1 The Cartan–Dieudonné Theorem for Linear Isometries
用於線性等距同構(變換)的嘉當-迪厄多內定理
27.2 Affine Isometries (Rigid Motions)
仿射等距變換(剛體運動)
27.3 Fixed Points of Affine Maps
仿射映射的不動點
27.4 Affine Isometries and Fixed Points
仿射等距變換與不動點
27.5 The Cartan–Dieudonné Theorem for Affine Isometries
用於仿射等距變換的嘉當-迪厄多內定理
28 Isometries of Hermitian Spaces
埃爾米特空間的等距變換
28.1 The Cartan–Dieudonné Theorem, Hermitian Case
嘉當-迪厄多內定理,埃爾米特情形
28.2 Affine Isometries (Rigid Motions)
仿射等距變換(剛體運動)
29 The Geometry of Bilinear Forms; Witt’s Theorem
雙線性型幾何;維特定理
29.1 Bilinear Forms
雙線性型
29.2 Sesquilinear Forms
半雙線性型
29.3 Orthogonality
正交
29.4 Adjoint of a Linear Map
伴隨線性變換
29.5 Isometries Associated with Sesquilinear Forms
有關半雙線性型的等距變換
29.6 Totally Isotropic Subspaces
全迷向子空間
29.7 Witt Decomposition
維特分解
29.8 Symplectic Groups
辛羣
29.9 Orthogonal Groups and the Cartan–Dieudonné Theorem
正交羣與嘉當-迪厄多內定理
29.10 Witt’s Theorem
維特定理
IV Algebra: PID’s, UFD’s, Noetherian Rings, Tensors, Modules over a PID, Normal Forms
代數:主理想整環,惟一分解整環,諾特環,張量,主理想整環上的模,範式(標準型)
30 Polynomials, Ideals and PID’s
多項式,環論中的(理想)和主理想整環
30.1 Multisets
多重集
30.2 Polynomials
多項式
30.3 Euclidean Division of Polynomials
多項式的歐幾里得除法
30.4 Ideals, PID’s, and Greatest Common Divisors
理想,主理想整環及最大公約數
30.5 Factorization and Irreducible Factors in K[X]
K[X] 中的因式分解和不可約因子
30.6 Roots of Polynomials
多項式的根
30.7 Polynomial Interpolation (Lagrange, Newton, Hermite)
多項式插值(拉格朗日,牛頓,埃爾米特)
31 Annihilating Polynomials; Primary Decomposition
零化多項式;準素分解
31.1 Annihilating Polynomials and the Minimal Polynomial
零化多項式和極小多項式
31.2 Minimal Polynomials of Diagonalizable Linear Maps
可對角化線性映射的極小多項式
31.3 Commuting Families of Linear Maps
線性映射的交換族
31.4 The Primary Decomposition Theorem
準素分解定理
31.5 Jordan Decomposition
若爾當分解
31.6 Nilpotent Linear Maps and Jordan Form
冪零線性變換和若爾當形式
32 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem
惟一分解整環,諾特環,希爾伯特基定理
32.1 Unique Factorization Domains (Factorial Rings)
惟一分解整環(析因環/惟一分解環)
32.2 The Chinese Remainder Theorem
中國剩餘定理(孫子定理)
32.3 Noetherian Rings and Hilbert’s Basis Theorem
諾特環和希爾伯特基定理
32.4 Futher Readings
深刻閱讀
33 Tensor Algebras
張量代數
33.1 Linear Algebra Preliminaries: Dual Spaces and Pairings
線性代數預備知識:對偶空間和配對
33.2 Tensors Products
張量積
33.3 Bases of Tensor Products
張量積的基
33.4 Some Useful Isomorphisms for Tensor Products
一些對於張量積有用的同構
33.5 Duality for Tensor Products
用於張量積的對偶
33.6 Tensor Algebras
張量代數
33.7 Symmetric Tensor Powers
對稱張量冪
33.8 Bases of Symmetric Powers
對稱冪的基
33.9 Some Useful Isomorphisms for Symmetric Powers
一些對於對稱冪有用的同構
33.10 Duality for Symmetric Powers
用於對稱冪的對偶
33.11 Symmetric Algebras
對稱代數
34 Exterior Tensor Powers and Exterior Algebras
外張量冪和外代數
34.1 Exterior Tensor Powers
外張量冪
34.2 Bases of Exterior Powers
外冪的基
34.3 Some Useful Isomorphisms for Exterior Powers
一些對於外冪有用的同構
34.4 Duality for Exterior Powers
用於外冪的對偶
34.5 Exterior Algebras
外代數
34.6 The Hodge ∗-Operator
霍奇星算子
34.7 Left and Right Hooks
左右彎鉤
34.8 Testing Decomposability
測試可分解性
34.9 The Grassmann-Plücker’s Equations and Grassmannians
格拉斯曼-普呂克方程 和 格拉斯曼流形
34.10 Vector-Valued Alternating Forms
向量值交錯型
35 Introduction to Modules; Modules over a PID
模介紹;主理想整環上的模
35.1 Modules over a Commutative Ring
交換環上的模
35.2 Finite Presentations of Modules
有限表現的模
35.3 Tensor Products of Modules over a Commutative Ring
交換環上的模張量積
35.4 Torsion Modules over a PID; Primary Decomposition
主理想整環上的撓模;準素分解
35.5 Finitely Generated Modules over a PID
主理想整環上的有限生成模
35.6 Extension of the Ring of Scalars
標量環的擴張
36 Normal Forms; The Rational Canonical Form
範式;有理標準型
36.1 The Torsion Module Associated With An Endomorphism
有關自同態的撓模
36.2 The Rational Canonical Form
有理標準型
36.3 The Rational Canonical Form, Second Version
有理標準型,第二種版本
36.4 The Jordan Form Revisited
回顧若爾當標準型
36.5 The Smith Normal Form
史密斯標準型
V Topology, Differential Calculus
拓撲學,微分學
37 Topology
拓撲學
37.1 Metric Spaces and Normed Vector Spaces
度量空間與賦範線性空間
37.2 Topological Spaces
拓撲空間
37.3 Continuous Functions, Limits
連續函數,極限
37.4 Connected Sets
連通集
37.5 Compact Sets and Locally Compact Spaces
緊集和局部緊空間
37.6 Second-Countable and Separable Spaces
第二可數和可分空間
37.7 Sequential Compactness
序列緊性
37.8 Complete Metric Spaces and Compactness
徹底度量空間和緊緻性
37.9 Completion of a Metric Space
度量空間的徹底化
37.10 The Contraction Mapping Theorem
壓縮映射定理(又稱,Banach's Fixed Point Theorem 巴拿赫不動點定理)
37.11 Continuous Linear and Multilinear Maps
連續線性與多重線性映射
37.12 Completion of a Normed Vector Space
賦範向量空間的徹底化
37.13 Normed Affine Spaces
賦範仿射空間
37.14 Futher Readings
深刻閱讀
38 A Detour On Fractals
分形上的繞行
38.1 Iterated Function Systems and Fractals
迭代函數系統和分形
39 Differential Calculus
微分學
39.1 Directional Derivatives, Total Derivatives
方向導數,全微分
39.2 Jacobian Matrices
雅可比矩陣
39.3 The Implicit and The Inverse Function Theorems
隱函數定理和反函數定理
39.4 Tangent Spaces and Differentials
切空間與微分
39.5 Second-Order and Higher-Order Derivatives
二階導數與高階導數
39.6 Taylor’s formula, Faà di Bruno’s formula
泰勒公式,Faà di Bruno公式
39.7 Vector Fields, Covariant Derivatives, Lie Brackets
向量場,協變函數,李括號
39.8 Futher Readings
深刻閱讀
VI Preliminaries for Optimization Theory
優化理論所需的預備知識
40 Extrema of Real-Valued Functions
實值函數的極值
40.1 Local Extrema and Lagrange Multipliers
局部極值與拉格朗日乘數
40.2 Using Second Derivatives to Find Extrema
使用二階導數求極值
40.3 Using Convexity to Find Extrema
使用凸性求極值
41 Newton’s Method and Its Generalizations
牛頓法及其推廣
41.1 Newton’s Method for Real Functions of a Real Argument
牛頓法應用於實參的實函數
41.2 Generalizations of Newton’s Method
牛頓法的推廣
42 Quadratic Optimization Problems
二次優化問題
42.1 Quadratic Optimization: The Positive Definite Case
二次優化:正定情形
42.2 Quadratic Optimization: The General Case
二次優化:通常情形
42.3 Maximizing a Quadratic Function on the Unit Sphere
最大化單位球面上的二次函數
43 Schur Complements and Applications
舒爾補及應用
43.1 Schur Complements
舒爾補
43.2 SPD Matrices and Schur Complements
對稱正定矩陣和舒爾補
43.3 SP Semidefinite Matrices and Schur Complements
對稱半正定矩陣和舒爾補
VII Linear Optimization
線性優化
44 Convex Sets, Cones, H-Polyhedra
凸集,錐,H-多面體
44.1 What is Linear Programming?
什麼是線性規劃?
44.2 Affine Subsets, Convex Sets, Hyperplanes, Half-Spaces
仿射子集,凸集,超平面,半空間
44.3 Cones, Polyhedral Cones, and H-Polyhedra
錐,多面錐和H-多面體
45 Linear Programs
線性規劃
45.1 Linear Programs, Feasible Solutions, Optimal Solutions
線性規劃,可行解,最優解
45.2 Basic Feasible Solutions and Vertices
基本可行解和頂點(圖論,或稱節點,node)
46 The Simplex Algorithm
單純形法
46.1 The Idea Behind the Simplex Algorithm
單純形法背後的想法
46.2 The Simplex Algorithm in General
通常的單純形法
46.3 How to Perform a Pivoting Step Efficiently
如何高效地執行轉換步驟
46.4 The Simplex Algorithm Using Tableaux
使用 Tableaux 的單純形法
46.5 Computational Efficiency of the Simplex Method
單純形法的計算效率
47 Linear Programming and Duality
線性規劃與對偶
47.1 Variants of the Farkas Lemma
法卡斯引理的變體
47.2 The Duality Theorem in Linear Programming
線性規劃中的對偶定理
47.3 Complementary Slackness Conditions
互補鬆弛條件
47.4 Duality for Linear Programs in Standard Form
對偶用於標準型線性規劃
47.5 The Dual Simplex Algorithm
對偶單純形法
47.6 The Primal-Dual Algorithm
原始對偶法
VIII NonLinear Optimization
非線性優化
48 Basics of Hilbert Spaces
希爾伯特空間基礎
48.1 The Projection Lemma, Duality
射影引理,對偶
48.2 Farkas–Minkowski Lemma in Hilbert Spaces
希爾伯特空間中的法卡斯-閔可夫斯基引理
49 General Results of Optimization Theory
優化理論的通常結果
49.1 Optimization Problems; Basic Terminology
優化問題;基本術語
49.2 Existence of Solutions of an Optimization Problem
最優化問題解的存在性
49.3 Minima of Quadratic Functionals
二次函數的極小值
49.4 Elliptic Functionals
橢圓函數
49.5 Iterative Methods for Unconstrained Problems
無約束優化問題的迭代法
49.6 Gradient Descent Methods for Unconstrained Problems
無約束優化問題的梯度降低法
49.7 Convergence of Gradient Descent with Variable Stepsize
變步長梯度降低法的收斂
49.8 Steepest Descent for an Arbitrary Norm
任意範數的最速降低法
49.9 Newton’s Method For Finding a Minimum
牛頓法求最小值
49.10 Conjugate Gradient Methods; Unconstrained Problems
共軛梯度法;無約束問題
49.11 Gradient Projection for Constrained Optimization
約束優化的梯度投影法
49.12 Penalty Methods for Constrained Optimization
約束優化問題的懲罰算法
50 Introduction to Nonlinear Optimization
非線性優化介紹
50.1 The Cone of Feasible Directions
可行方向錐
50.2 Active Constraints and Qualified Constraints
積極約束與規範約束
50.3 The Karush–Kuhn–Tucker Conditions
卡魯什-庫恩-塔克條件
50.4 Equality Constrained Minimization
等式約束最小化
50.5 Hard Margin Support Vector Machine; Version I
硬間隔支持向量機,第1版
50.6 Hard Margin Support Vector Machine; Version II
硬間隔支持向量機,第2版
50.7 Lagrangian Duality and Saddle Points
拉格朗日對偶和鞍點
50.8 Weak and Strong Duality
弱對偶和強對偶
50.9 Handling Equality Constraints Explicitly
明確地處理等式約束
50.10 Dual of the Hard Margin Support Vector Machine
硬間隔支持向量機的對偶
50.11 Conjugate Function and Legendre Dual Function
共軛函數與勒讓德對偶函數
50.12 Some Techniques to Obtain a More Useful Dual Program
一些獲取更有用對偶規劃的技巧
50.13 Uzawa’s Method
Uzawa 算法
51 Subgradients and Subdifferentials
次梯度和次微分
51.1 Extended Real-Valued Convex Functions
擴充實值凸函數
51.2 Subgradients and Subdifferentials
次梯度和次微分
51.3 Basic Properties of Subgradients and Subdifferentials
次梯度和次微分的基本性質
51.4 Additional Properties of Subdifferentials
次微分的其餘性質
51.5 The Minimum of a Proper Convex Function
真凸函數的最小值
51.6 Generalization of the Lagrangian Framework
拉格朗日框架的推廣
52 Dual Ascent Methods; ADMM
對偶上升法;交替方向乘子法
52.1 Dual Ascent
對偶上升法
52.2 Augmented Lagrangians and the Method of Multipliers
增廣拉格朗日和乘子法
52.3 ADMM: Alternating Direction Method of Multipliers
交替方向乘子法
52.4 Convergence of ADMM
交替方向乘子法的收斂
52.5 Stopping Criteria
中止準則(條件)
52.6 Some Applications of ADMM
ADMM的一些應用
52.7 Applications of ADMM to L1 -Norm Problems
ADMM在L1範數問題上的一些應用
IX Applications to Machine Learning
機器學習中的應用
53 Ridge Regression and Lasso Regression
嶺迴歸和Lasso迴歸(最小絕對值收斂和選擇算子、套索算法)
53.1 Ridge Regression
嶺迴歸
53.2 Lasso Regression (L1 - Regularized Regression)
Lasso迴歸(L1正則迴歸)
54 Positive Definite Kernels
正定核
54.1 Basic Properties of Positive Definite Kernels
正定核的基本性質
54.2 Hilbert Space Representation of a Positive Kernel
正定核的希爾伯特空間表示
54.3 Kernel PCA
核主成分分析
54.4 ν-SV Regression
v-支持向量機迴歸
55 Soft Margin Support Vector Machines
軟間隔支持向量機
55.1 Soft Margin Support Vector Machines; (SVM s1 )
軟間隔支持向量機(SVM s1 )
55.2 Soft Margin Support Vector Machines; (SVM s2 )
軟間隔支持向量機(SVM s2)
55.3 Soft Margin Support Vector Machines; (SVM s2‘)
軟間隔支持向量機(SVM s2‘)
55.4 Soft Margin SVM; (SVM s3 )
軟間隔支持向量機(SVM s3)
55.5 Soft Margin Support Vector Machines; (SVM s4 )
軟間隔支持向量機(SVM s4)
55.6 Soft Margin SVM; (SVM s5 )
軟間隔支持向量機(SVM s5)
55.7 Summary and Comparison of the SVM Methods
總結及各類支持向量機法之間的比較
X Appendices
附錄
A Total Orthogonal Families in Hilbert Spaces
希爾伯特空間中的徹底正交族
A.1 Total Orthogonal Families, Fourier Coefficients
徹底正交族,傅里葉係數
A.2 The Hilbert Space L2 (K) and the Riesz-Fischer Theorem
希爾伯特空間L2(K)和 里斯-費舍爾定理
B Zorn’s Lemma; Some Applications
佐恩引理;一些應用
B.1 Statement of Zorn’s Lemma
佐恩引理的描述
B.2 Proof of the Existence of a Basis in a Vector Space
向量空間中基存在的證實
B.3 Existence of Maximal Proper Ideals
極大真理想的存在性
Bibliography
參考文獻
Enjoy it.