系統須要對接某IM廠商rest接口,向客戶端推送消息(以及其餘IM業務)
該廠商對rest接口調用有頻率限制:總rest調用9000次/30s;消息推送600次/30s
系統爲分佈式集羣,須要控制整個分佈式集羣總的接口調用頻率知足以上限制java
上篇文章 《Guava RateLimiter源碼解析》中介紹了Guava RateLimiter的用法及原理,但爲何不直接使用Guava RateLimiter?緣由有二:git
爲何說選用redis是合理的?github
這裏徹底參考Guava RateLimiter實現思路,不一樣的是,Guava將令牌桶數據存放於對象(內存)中,這裏講令牌桶數據存放在redis中,奉上源碼 https://github.com/manerfan/m...redis
首先建立令牌桶數據模型spring
class RedisPermits( val maxPermits: Long, var storedPermits: Long, val intervalMillis: Long, var nextFreeTicketMillis: Long = System.currentTimeMillis() ) { constructor(permitsPerSecond: Double, maxBurstSeconds: Int = 60, nextFreeTicketMillis: Long = System.currentTimeMillis()) : this((permitsPerSecond * maxBurstSeconds).toLong(), permitsPerSecond.toLong(), (TimeUnit.SECONDS.toMillis(1) / permitsPerSecond).toLong(), nextFreeTicketMillis) fun expires(): Long { val now = System.currentTimeMillis() return 2 * TimeUnit.MINUTES.toSeconds(1) + TimeUnit.MILLISECONDS.toSeconds(max(nextFreeTicketMillis, now) - now) } fun reSync(now: Long): Boolean { if (now > nextFreeTicketMillis) { storedPermits = min(maxPermits, storedPermits + (now - nextFreeTicketMillis) / intervalMillis) nextFreeTicketMillis = now return true } return false } }
各屬性字段含義與Guava相同(參見《Guava RateLimiter源碼解析》),且默認最多存儲maxBurstSeconds秒生成的令牌segmentfault
reSync
函數一樣是爲了解決令牌桶數據更新問題,在每次獲取令牌以前調用,這裏很少介紹expires
函數計算redis數據過時時間。一樣的例子,某接口須要分別對每一個用戶作訪問頻率限制,假設系統中存在6W用戶,則至多須要在redis中建立6W條數據,對於長期運行的系統,這個數字會只增不減,這對於redis來講也是一個不小的挑戰(雖然示例中的數字相對較小)。爲了減輕redis壓力,須要對令牌桶數據作過時處理,對於使用頻率不是很高的業務場景,能夠及時清理。springboot
爲了更好的操做,這裏建立一個操做RedisPermits的Redis模板服務器
@Configuration class RateLimiterConfiguration { @Bean fun permitsTemplate(redisConnectionFactory: RedisConnectionFactory): PermitsTemplate { val template = PermitsTemplate() template.connectionFactory = redisConnectionFactory return template } } class PermitsTemplate : RedisTemplate<String, RedisPermits>() { private val objectMapper = jacksonObjectMapper() init { keySerializer = StringRedisSerializer() valueSerializer = object : RedisSerializer<RedisPermits> { override fun serialize(t: RedisPermits) = objectMapper.writeValueAsBytes(t) override fun deserialize(bytes: ByteArray?) = bytes?.let { objectMapper.readValue(it, RedisPermits::class.java) } } } }
如下介紹幾個關鍵函數,完整代碼見 https://github.com/manerfan/m...併發
/** * 生成並存儲默認令牌桶 */ private fun putDefaultPermits(): RedisPermits { val permits = RedisPermits(permitsPerSecond, maxBurstSeconds) permitsTemplate.opsForValue().set(key, permits, permits.expires(), TimeUnit.SECONDS) return permits } /** * 獲取/更新令牌桶 */ private var permits: RedisPermits get() = permitsTemplate.opsForValue()[key] ?: putDefaultPermits() set(permits) = permitsTemplate.opsForValue().set(key, permits, permits.expires(), TimeUnit.SECONDS) /** * 獲取redis服務器時間 */ private val now get() = permitsTemplate.execute { it.time() } ?: System.currentTimeMillis()
putDefaultPermits
用於生成默認令牌桶並存入redispermits
的getter
setter
方法實現了redis中令牌桶的獲取及更新now
用於獲取redis服務器的時間,這樣便能保證分佈式集羣中各節點對數據處理的一致性app
private fun reserveAndGetWaitLength(tokens: Long): Long { val n = now var permit = permits permit.reSync(n) val storedPermitsToSpend = min(tokens, permit.storedPermits) // 能夠消耗的令牌數 val freshPermits = tokens - storedPermitsToSpend // 須要等待的令牌數 val waitMillis = freshPermits * permit.intervalMillis // 須要等待的時間 permit.nextFreeTicketMillis = LongMath.saturatedAdd(permit.nextFreeTicketMillis, waitMillis) permit.storedPermits -= storedPermitsToSpend permits = permit return permit.nextFreeTicketMillis - n }
該函數用於獲取tokens個令牌,並返回須要等待到的時長(毫秒)
其中,storedPermitsToSpend爲桶中能夠消費的令牌數,freshPermits爲還須要的(須要補充的)令牌數,根據該值計算須要等待的時間,追加並更新到nextFreeTicketMillis
須要注意,這裏與Guava RateLimiter不一樣的是,Guava中的返回是更新前的(上次請求計算的)nextFreeTicketMicros,本次請求經過爲上次請求的預消費行爲埋單而實現突發請求的處理;這裏返回的是因爲桶中令牌不足而須要真真切切等待的時間
通俗來說
private fun reserve(tokens: Long): Long { checkTokens(tokens) try { syncLock.lock() return reserveAndGetWaitLength(tokens) } finally { syncLock.unLock() } }
該函數與reserveAndGetWaitLength
等同,只是爲了不併發問題而添加了同步鎖(分佈式同步鎖的介紹請參見《基於redis的分佈式鎖實現》)
private fun queryEarliestAvailable(tokens: Long): Long { val n = now var permit = permits permit.reSync(n) val storedPermitsToSpend = min(tokens, permit.storedPermits) // 能夠消耗的令牌數 val freshPermits = tokens - storedPermitsToSpend // 須要等待的令牌數 val waitMillis = freshPermits * permit.intervalMillis // 須要等待的時間 return LongMath.saturatedAdd(permit.nextFreeTicketMillis - n, waitMillis) }
該函數用於計算,獲取tokens個令牌須要等待的時長(毫秒)
private fun canAcquire(tokens: Long, timeoutMillis: Long): Boolean { return queryEarliestAvailable(tokens) - timeoutMillis <= 0 }
該函數用於計算,timeoutMillis時間內是否能夠獲取tokens個令牌
經過以上幾個函數的瞭解,咱們即可以很輕鬆的實現Guava RateLimiter中的acquire
及tryAcquire
功能
fun acquire(tokens: Long): Long { var milliToWait = reserve(tokens) logger.info("acquire for {}ms {}", milliToWait, Thread.currentThread().name) Thread.sleep(milliToWait) return milliToWait } fun acquire() = acquire(1)
fun tryAcquire(tokens: Long, timeout: Long, unit: TimeUnit): Boolean { val timeoutMicros = max(unit.toMillis(timeout), 0) checkTokens(tokens) var milliToWait: Long try { syncLock.lock() if (!canAcquire(tokens, timeoutMicros)) { return false } else { milliToWait = reserveAndGetWaitLength(tokens) } } finally { syncLock.unLock() } Thread.sleep(milliToWait) return true } fun tryAcquire(timeout: Long, unit: TimeUnit) = tryAcquire(1, timeout, unit)
至此,基於redis的分佈式RateLimiter(限流)控制功能便完成了
回到文檔起始處提出的問題,接某IM廠商rest接口,咱們能夠針對不一樣的頻率限制建立不一樣的RateLimiter
val restRateLimiter = rateLimiterFactory.build("ratelimiter:im:rest", 9000 /30, 30) val msgRateLimiter = rateLimiterFactory.build("ratelimiter:im:msg", 600 /30, 30)
推送消息時,能夠以下調用
restRateLimiter.acquire() msgRateLimiter.acquire(msgs.size) msgUtil.push(msgs)
對於接口提供方限制接口訪問頻次,能夠以下實現
val msgRateLimiter = rateLimiterFactory.build("ratelimiter:im:msg", 600 /30, 30) fun receiveMsg(msgs: Array<Message>): Boolean { return when(msgRateLimiter.tryAcquire(msgs.size, 2, TimeUnit.SECONDS)) { true -> { thread(true) { msgUtil.receive(msgs) } true } else -> false } }