Dijkstra算法——計算一個點到其餘全部點的最短路徑的算法

迪傑斯特拉算法百度百科定義:傳送門html

gh大佬博客:傳送門node

迪傑斯特拉算法用來計算一個點到其餘全部點的最短路徑,是一種時間複雜度相對比較優秀的算法 O(n2)(相對於Floyd算法來講)ios

是一種單源最短路徑算法,可是它並不能處理負邊權的狀況算法

Dijkstra的算法思想:①將一開始全部的非源點到源的距離設置成無限大(你認爲的無限大其實是0x3f(int)或者0x7fffffff(long long)),而後源到源距離設置成0(不就是0嗎),而後每次找到一個距離源最短的點u,將其變成白點,枚舉全部的藍點,若是源到白點存在中轉站——一個藍點使得源->藍點和藍點->白點的距離和更短,就更新。②每找到一個白點,就嘗試更新其餘藍點,直到更新完畢。數組

代碼及註釋:優化

#include<cstdio> #include<iostream> #include<cstdlib> #include<iomanip> #include<cmath> #include<cstring> #include<string> #include<algorithm> #include<time.h> #include<queue>
using namespace std; typedef long long ll; typedef long double ld; typedef pair<int,int> pr; const double pi=acos(-1); #define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second ld eps=1e-9; ll pp=1000000007; ll mo(ll a,ll pp){if(a>=0 && a<pp)return a;a%=pp;if(a<0)a+=pp;return a;} ll powmod(ll a,ll b,ll pp){ll ans=1;for(;b;b>>=1,a=mo(a*a,pp))if(b&1)ans=mo(ans*a,pp);return ans;} ll read(){ ll ans=0; char last=' ',ch=getchar(); while(ch<'0' || ch>'9')last=ch,ch=getchar(); while(ch>='0' && ch<='9')ans=ans*10+ch-'0',ch=getchar(); if(last=='-')ans=-ans; return ans; }//快讀 //head



const int maxn=5001; int g[maxn][maxn];//g數組用來存儲圖; 
int n,m,s;//分別表示點的個數、有向邊的個數、出發點的編號;
bool vis[maxn];//表示是否已經到達過;
int d[maxn];//d[i]表示從詢問點到點i的最短路徑;
const int inf=2147483647; int main () { n=read(),m=read(),s=read(); rep(i,1,n) { d[i]=inf; rep(j,1,n) g[i][j]=inf; g[i][i]=0;//本身到本身的最短路徑固然是0 
    }//初始化數組; 
 rep(i,1,m) { int u=read(),v=read(),w=read(); //u,v,i分別表示第i條有向邊的出發點、目標點和長度;
        g[u][v]=w;//讀入; 
 } vis[s]=1;//將起點標記成已經到達;
 rep(i,1,n) d[i]=g[s][i];//將最短路徑初始化; //若是兩點之間有路線就初始化爲該距離,若是沒有就仍是inf;
        
    while(1) { int stt_node=0,stt_dis=inf;//stt=shortest 初始化兩個變量 // stt_node表示最短路徑的終點,stt_dis表示最短路徑的長度 
 rep(i,1,n) { if(vis[i]==0&&d[i]<stt_dis) //若是該點尚未到達,而且他的距離小於最短距離 
 { stt_node=i,stt_dis=d[i];//更新變量 
 } } if(stt_node==0) break; //若是已經沒有能夠更新的最短路徑了,就說明已經結束了
 vis[stt_node]=1;//將該點標記成已經到達 
 rep(i,1,n) { if(vis[i]||g[stt_node][i]==inf)continue; //若是並無到達或者是兩點之間沒有路徑,就進入下一層循環 
 d[i]=min(d[i],stt_dis+g[stt_node][i]);//更新最短路徑 
 } } rep(i,1,n) printf("%d ",d[i]); return 0; }

咱們考慮一下對它的優化。由於若是咱們每一次都要掃一遍判斷出邊,咱們還不如直接存出邊:spa

鄰接表!(鏈式前向星)

#include<cstdio> #include<iostream> #include<cstdlib> #include<iomanip> #include<cmath> #include<cstring> #include<string> #include<algorithm> #include<time.h> #include<queue>
using namespace std; typedef long long ll; typedef long double ld; typedef pair<int,int> pr; const double pi=acos(-1); #define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second ld eps=1e-9; ll pp=1000000007; ll mo(ll a,ll pp){if(a>=0 && a<pp)return a;a%=pp;if(a<0)a+=pp;return a;} ll powmod(ll a,ll b,ll pp){ll ans=1;for(;b;b>>=1,a=mo(a*a,pp))if(b&1)ans=mo(ans*a,pp);return ans;} ll read(){ ll ans=0; char last=' ',ch=getchar(); while(ch<'0' || ch>'9')last=ch,ch=getchar(); while(ch>='0' && ch<='9')ans=ans*10+ch-'0',ch=getchar(); if(last=='-')ans=-ans; return ans; }//快讀 //head


const ll INF = 2147483647; struct edge { ll to, dis_, next; } Edge[9999999]; struct node { ll to, dis; inline friend bool operator<(const node &a, const node &b) { return a.dis < b.dis; } }; ll head[9999999], dis[9999999]; bool vst[9999999]; ll nodenum, edgenum, origin_node, cnt = 1, t; priority_queue<node> q; inline void add_edge(ll from, ll to, ll value) { Edge[cnt].to = to; Edge[cnt].dis_ = value; Edge[cnt].next = head[from]; head[from] = cnt++; } inline void dijkstra() { for (register int i = 1; i < origin_node; i++) { dis[i] = INF; } //dis[origin_node]=0;
    for (register int i = origin_node + 1; i <= nodenum; i++) { dis[i] = INF; } q.push((node){origin_node, 0}); while (!q.empty()) { int x = q.top().to; q.pop(); if (vst[x]) continue; vst[x] = 1; for (register int i = head[x]; i; i = Edge[i].next) { dis[Edge[i].to] = min(dis[Edge[i].to], dis[x] + Edge[i].dis_); q.push((node){Edge[i].to, dis[Edge[i].to]}); } } } int main() { nodenum = read(), edgenum = read(), origin_node = read() ;//t=read();
    for (register int i = 1; i <= edgenum; i++) { register int f, t, v; f = read(), t = read(), v = read(); add_edge(f, t, v); } dijkstra(); rep(i,1,nodenum) { printf("%lld ",dis[i]); } return 0; }
相關文章
相關標籤/搜索