基本概念 圖像的平滑也就是圖像的模糊處理,簡單可是使用頻率很高,在執行許多高級處理以前都須要先進性圖像的平滑處理,以提升圖像處理算法效果。java
平滑處理中須要使用濾波器,經常使用的是線性濾波器,做用是將輸入像素值的加權和做爲結果輸出給錨點像素。android
g(i,j) 爲輸出的錨點像素值;f(i+k,j+l) 爲輸入的像素值;h(k,l) 爲核c++
濾波過程示例:git
圖像讀入到matgithub
介紹平滑算法以前,先調用android自帶圖庫,選擇一張圖片後返回到app中,保存在一個mat對象裏。算法
//點擊按鈕,啓動圖庫
btnLoadImg.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
Intent imgPickerIntent = new Intent(Intent.ACTION_PICK);
imgPickerIntent.setType("image/*");
startActivityForResult(imgPickerIntent, REQ_CODE_PICK_IMG);
}
});
@Override
protected void onActivityResult(int requestCode, int resultCode, @Nullable Intent data) {
super.onActivityResult(requestCode, resultCode, data);
if (requestCode == REQ_CODE_PICK_IMG) {
if (resultCode == RESULT_OK) {
try {
//獲取圖庫選擇的圖像
final Uri imgUri = data.getData();
final InputStream inputStream = getContentResolver().openInputStream(imgUri);
//圖像輸入流解析爲bitmap對象
final Bitmap originImg = BitmapFactory.decodeStream(inputStream);
//根據bitmap信息初始化mat對象
src = new Mat(originImg.getHeight(), originImg.getWidth(), CvType.CV_8UC4);
//將bitmap轉換爲mat對象
Utils.bitmapToMat(originImg, src);
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
}
}
複製代碼
另外,圖像保存在mat對象中,因此還須要一個顯示mat對象圖像的方法。app
private void showMat() {
//根據mat對象信息初始化bitmap
Bitmap processedImg = Bitmap.createBitmap(src.cols(), src.rows(), Bitmap.Config.ARGB_8888);
//將mat對象轉換到bitmap
Utils.matToBitmap(src, processedImg);
//顯示
imgProcess.setImageBitmap(processedImg);
}
複製代碼
均值模糊ide
使用歸一化塊濾波器,也是最簡單的濾波器,輸出像素值是核窗口內像素的均值,即全部像素加權係數相等。函數
核以下:spa
opencv-android sdk 提供的方法以下
/** * 均值模糊 * @param src 源圖像mat * @param dst 目標圖像mat * @param ksize 核大小 */
public static void blur(Mat src, Mat dst, Size ksize) {
//sdk封裝的一個jni方法,具體的實如今.so庫中用c/c++實現
blur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height);
return;
}
複製代碼
方法使用以下:
Imgproc.blur(src, src, new Size(3, 3));
showMat();
複製代碼
高斯模糊
高斯濾波器是最有用的濾波器(不是最快),將輸入的每個像素點與高斯內核的卷積核做爲輸出像素值。
高斯模糊中,距離錨點像素越近的輸入像素權重越高,即臨近錨點像素對像素結果的影響比那些較遠的像素要高。
高斯核是經過高斯函數得到的
opencv-android sdk 提供的方法以下
//javadoc: GaussianBlur(src, dst, ksize, sigmaX)
public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX) {
//sdk封裝的一個jni方法,具體的實如今.so庫中用c/c++實現
GaussianBlur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX);
return;
}
複製代碼
方法使用
Imgproc.GaussianBlur(src, src, new Size(3, 3), 0);
showMat();
複製代碼
中值濾波
中值濾波是將圖像的每一個像素用鄰域像素的中值代替。
opencv-android sdk 提供的方法以下
//javadoc: medianBlur(src, dst, ksize)
public static void medianBlur(Mat src, Mat dst, int ksize) {
medianBlur_0(src.nativeObj, dst.nativeObj, ksize);
return;
}
複製代碼
方法使用
Imgproc.medianBlur(src, src, 3);
showMat();
複製代碼
總結
這裏簡單介紹了幾種濾波器和opencv對應的方法,並在android下進行了簡單使用,具體的代碼能夠參見demo
另外,也知道了,opencv-android sdk 的方法其實都是jni封裝的c/c++的實現,sdk中也沒有什麼註釋,可是方法的參數和做用是和c/c++保持一致的,因此閱讀opencv官網上的開發文檔便可(部分章節有java的示例和說明)。