論文閱讀筆記《Dense Classification and Implanting for Few-Shot Learning》

核心思想   本文是對基於度量學習的小樣本學習算法進行改進。常見的度量學習算法通常利用一個嵌入式網絡對圖像進行特徵提取,然後利用一個線性分類器進行分類。在訓練過程中得到的線性分類器權重可以看作對應每個類別的權值(class weights),在測試時,就比較查詢圖像對應的特徵值與每個類別權值之間的相似性,並以此進行分類預測。二維圖像經過特徵提取後得到的特徵信息是高維的張量,因此通常需要壓縮維度,以
相關文章
相關標籤/搜索