本文主要在以前的區塊鏈原形上添加了工做量證實,而且爲後繼的交易功能作好準備.ios
上一個章節咱們已經建立了區塊鏈的基本原形,可是區塊的哈希計算和加入太過於簡單,若是按照這種速度添加區塊那麼區塊鏈估計一個小時就爆滿了。c++
真實的比特幣中是全網一個小時產生6個區塊,咱們的示例中也須要調整區塊哈希計算的難度。程序員
工做量證實算法
人爲的提高哈希計算的閥值,加大哈希計算難度與工做量,這樣的工做機制才能保證整個區塊鏈數據的安全性和一致性。數據庫
區塊鏈的一個關鍵點就是,一我的必須通過一系列困難的工做,才能將數據放入到區塊鏈中。正是這種困難的工做,才使得區塊鏈是安全和一致的。此外,完成這個工做的人也會得到獎勵(這也就是經過挖礦得到幣)。windows
這個機制與生活的一個現象很是相似:一我的必須經過努力工做,纔可以得到回報或者獎勵,用以支撐他們的生活。在區塊鏈中,是經過網絡中的參與者(礦工)不斷的工做來支撐整個網絡,也就是礦工不斷地向區塊鏈中加入新塊,而後得到相應的獎勵。做爲他們努力工做的結果,新生成的區塊就可以被安全地被加入到區塊鏈中,這種機制維護了整個區塊鏈數據庫的穩定性。值得注意的是,完成了這個工做的人必需要證實這一點,他必需要證實確實是他完成了這些工做。安全
整個 「努力工做並進行證實」 的機制,就叫作工做量證實(proof-of-work)。要想完成工做很是地不容易,由於這須要大量的計算能力:即使是高性能計算機,也沒法在短期內快速完成。此外,這個工做的困難度會隨着時間不斷增加,以保持每一個小時大概出 6 個新塊的速度。在比特幣中,這個工做的目的是爲了找到一個塊的哈希,同時這個哈希知足了一些必要條件。這個哈希,也就充當了證實的角色。所以,尋求證實(尋找有效哈希),就是實際要作的事情。服務器
比特幣使用 Hashcash ,一個最初用來防止垃圾郵件的工做量證實算法。它能夠被分解爲如下步驟:網絡
所以,這是一個暴力算法:改變計數器,計算一個新的哈希,檢查,增長計數器,計算一個哈希,檢查,如此反覆。這也是爲何說它是在計算上是很是昂貴的,由於這一步須要如此反覆不斷地計算和檢查。ide
如今,讓咱們來仔細看一下一個哈希要知足的必要條件。在原始的 Hashcash 實現中,它的要求是 「一個哈希的前 20 位必須是 0」。在比特幣中,這個要求會隨着時間而不斷變化。由於按照設計,必須保證每 10 分鐘生成一個塊,而不論計算能力會隨着時間增加,或者是會有愈來愈多的礦工進入網絡,因此須要動態調整這個必要條件。
首先定義挖礦難度,也就是哈希值前多少位必須爲0的檢測標準。
#define DifficultyNum 6
咱們刪除原來在Block類中的Sethash()函數, 取而代之的是string Block::CalculateHash() 和 void Block::ProofOfWork(int difficultNum)
string Block::CalculateHash() 是根據區塊Block的建立時間和區塊描述和上一個區塊的哈希以及_nNonce來計算一個哈希值 並放回。返回的值會發送給ProofOfWork()函數驗證是否符合標準(前DifficultyNum位必須爲零).
string Block::CalculateHash() { stringstream ss; ss << _tTime << _data << _prevHash << _nNonce; return sha256(ss.str()); } void Block::ProofOfWork(int difficultNum) { char cstr[DifficultyNum + 1]; for (uint32_t i = 0; i < DifficultyNum; ++i) { cstr[i] = '0'; } cstr[DifficultyNum] = '\0'; string str(cstr); do { _nNonce++; _hash = CalculateHash(); } while (_hash.substr(0, difficultNum) != str); std::cout << "Block mined: " << _hash << std::endl; }
相應的 在建立區塊後都要調用工做量證實函數
void Blockchain::AddBlock(string datain) { Block* prev = blocks.back(); Block* newblock = new Block(datain, prev->_hash); newblock->ProofOfWork(DifficultyNum); blocks.push_back(newblock); }
static Block* NewBlock(string datain, string prevBlockHash) { Block* p = new Block( datain, prevBlockHash); p->ProofOfWork(DifficultyNum); return p; }
main函數基本沒有變化 咱們運行查看效果
int main() { Blockchain* bc = TOOLS::NewBlockchain(); bc->AddBlock("Send 1 BTC to Ivan"); bc->AddBlock("Send 2 more BTC to Ivan"); for (int i = 0; i < bc->blocks.size(); i++) { std::cout << "Prev hash = " << bc->blocks[i]->_prevHash << std::endl; std::cout << "data = " << bc->blocks[i]->_data << std::endl; std::cout << "hash = " << bc->blocks[i]->_hash << std::endl << std::endl; } //退出以前 刪除 delete bc; return 0; }
這個是難度爲4的計算結果:
這是難度爲6的計算結果
代碼以下:
#include "stdafx.h" #include "Blockchain.h" #include "util.h" #include <vector> #include <iostream> using namespace std; int main() { Blockchain* bc = TOOLS::NewBlockchain(); bc->AddBlock("Send 1 BTC to Ivan"); bc->AddBlock("Send 2 more BTC to Ivan"); for (int i = 0; i < bc->blocks.size(); i++) { std::cout << "Prev hash = " << bc->blocks[i]->_prevHash << std::endl; std::cout << "data = " << bc->blocks[i]->_data << std::endl; std::cout << "hash = " << bc->blocks[i]->_hash << std::endl << std::endl; } //退出以前 刪除 delete bc; system("pause"); return 0; }
#include <cstring> #include <fstream> #include "sha256.h" const unsigned int SHA256::sha256_k[64] = //UL = uint32 {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}; void SHA256::transform(const unsigned char *message, unsigned int block_nb) { uint32 w[64]; uint32 wv[8]; uint32 t1, t2; const unsigned char *sub_block; int i; int j; for (i = 0; i < (int) block_nb; i++) { sub_block = message + (i << 6); for (j = 0; j < 16; j++) { SHA2_PACK32(&sub_block[j << 2], &w[j]); } for (j = 16; j < 64; j++) { w[j] = SHA256_F4(w[j - 2]) + w[j - 7] + SHA256_F3(w[j - 15]) + w[j - 16]; } for (j = 0; j < 8; j++) { wv[j] = m_h[j]; } for (j = 0; j < 64; j++) { t1 = wv[7] + SHA256_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6]) + sha256_k[j] + w[j]; t2 = SHA256_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]); wv[7] = wv[6]; wv[6] = wv[5]; wv[5] = wv[4]; wv[4] = wv[3] + t1; wv[3] = wv[2]; wv[2] = wv[1]; wv[1] = wv[0]; wv[0] = t1 + t2; } for (j = 0; j < 8; j++) { m_h[j] += wv[j]; } } } void SHA256::init() { m_h[0] = 0x6a09e667; m_h[1] = 0xbb67ae85; m_h[2] = 0x3c6ef372; m_h[3] = 0xa54ff53a; m_h[4] = 0x510e527f; m_h[5] = 0x9b05688c; m_h[6] = 0x1f83d9ab; m_h[7] = 0x5be0cd19; m_len = 0; m_tot_len = 0; } void SHA256::update(const unsigned char *message, unsigned int len) { unsigned int block_nb; unsigned int new_len, rem_len, tmp_len; const unsigned char *shifted_message; tmp_len = SHA224_256_BLOCK_SIZE - m_len; rem_len = len < tmp_len ? len : tmp_len; memcpy(&m_block[m_len], message, rem_len); if (m_len + len < SHA224_256_BLOCK_SIZE) { m_len += len; return; } new_len = len - rem_len; block_nb = new_len / SHA224_256_BLOCK_SIZE; shifted_message = message + rem_len; transform(m_block, 1); transform(shifted_message, block_nb); rem_len = new_len % SHA224_256_BLOCK_SIZE; memcpy(m_block, &shifted_message[block_nb << 6], rem_len); m_len = rem_len; m_tot_len += (block_nb + 1) << 6; } void SHA256::final(unsigned char *digest) { unsigned int block_nb; unsigned int pm_len; unsigned int len_b; int i; block_nb = (1 + ((SHA224_256_BLOCK_SIZE - 9) < (m_len % SHA224_256_BLOCK_SIZE))); len_b = (m_tot_len + m_len) << 3; pm_len = block_nb << 6; memset(m_block + m_len, 0, pm_len - m_len); m_block[m_len] = 0x80; SHA2_UNPACK32(len_b, m_block + pm_len - 4); transform(m_block, block_nb); for (i = 0 ; i < 8; i++) { SHA2_UNPACK32(m_h[i], &digest[i << 2]); } } std::string sha256(std::string input) { unsigned char digest[SHA256::DIGEST_SIZE]; memset(digest,0,SHA256::DIGEST_SIZE); SHA256 ctx = SHA256(); ctx.init(); ctx.update( (unsigned char*)input.c_str(), input.length()); ctx.final(digest); char buf[2*SHA256::DIGEST_SIZE+1]; buf[2*SHA256::DIGEST_SIZE] = 0; for (int i = 0; i < SHA256::DIGEST_SIZE; i++) sprintf(buf+i*2, "%02x", digest[i]); return std::string(buf); }
#ifndef SHA256_H #define SHA256_H #include <string> class SHA256 { protected: typedef unsigned char uint8; typedef unsigned int uint32; typedef unsigned long long uint64; const static uint32 sha256_k[]; static const unsigned int SHA224_256_BLOCK_SIZE = (512/8); public: void init(); void update(const unsigned char *message, unsigned int len); void final(unsigned char *digest); static const unsigned int DIGEST_SIZE = ( 256 / 8); protected: void transform(const unsigned char *message, unsigned int block_nb); unsigned int m_tot_len; unsigned int m_len; unsigned char m_block[2*SHA224_256_BLOCK_SIZE]; uint32 m_h[8]; }; std::string sha256(std::string input); #define SHA2_SHFR(x, n) (x >> n) #define SHA2_ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n))) #define SHA2_ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n))) #define SHA2_CH(x, y, z) ((x & y) ^ (~x & z)) #define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define SHA256_F1(x) (SHA2_ROTR(x, 2) ^ SHA2_ROTR(x, 13) ^ SHA2_ROTR(x, 22)) #define SHA256_F2(x) (SHA2_ROTR(x, 6) ^ SHA2_ROTR(x, 11) ^ SHA2_ROTR(x, 25)) #define SHA256_F3(x) (SHA2_ROTR(x, 7) ^ SHA2_ROTR(x, 18) ^ SHA2_SHFR(x, 3)) #define SHA256_F4(x) (SHA2_ROTR(x, 17) ^ SHA2_ROTR(x, 19) ^ SHA2_SHFR(x, 10)) #define SHA2_UNPACK32(x, str) \ { \ *((str) + 3) = (uint8) ((x) ); \ *((str) + 2) = (uint8) ((x) >> 8); \ *((str) + 1) = (uint8) ((x) >> 16); \ *((str) + 0) = (uint8) ((x) >> 24); \ } #define SHA2_PACK32(str, x) \ { \ *(x) = ((uint32) *((str) + 3) ) \ | ((uint32) *((str) + 2) << 8) \ | ((uint32) *((str) + 1) << 16) \ | ((uint32) *((str) + 0) << 24); \ } #endif
#include "Blockchain.h" class TOOLS{ public: static Block* NewGenesisBlock() { return NewBlock("Genesis Block", ""); } static Blockchain* NewBlockchain() { Block* pblock = NewGenesisBlock(); Blockchain* p = new Blockchain(pblock); return p; } static Block* NewBlock(string datain, string prevBlockHash) { Block* p = new Block( datain, prevBlockHash); p->ProofOfWork(DifficultyNum); return p; } private: };
#include <string> using namespace std; #define DifficultyNum 6 class Block { public: string _hash; //當前區塊的哈希 string _data; //區塊描述字符 string _prevHash; //記錄上個塊的哈希值 Block(const string& prevHash, const string& dataIn); //構造函數 string CalculateHash(); //計算本區塊的可能哈希 返回值在MineBlock函數中驗證 void ProofOfWork(int difficultNum); private: int64_t _nNonce; //區塊隨機數 用於哈希值的產生 time_t _tTime; //建立時間 };
#include "Block.h" #include "sha256.h" #include <time.h> #include <string> #include <sstream> #include <iostream> using namespace std; string Block::CalculateHash() { stringstream ss; ss << _tTime << _data << _prevHash << _nNonce; return sha256(ss.str()); } Block::Block( const string& dataIn, const string& prevHash) { _tTime = time(nullptr); _nNonce = 0; _data = dataIn; _prevHash = prevHash; } void Block::ProofOfWork(int difficultNum) { char cstr[DifficultyNum + 1]; for (uint32_t i = 0; i < DifficultyNum; ++i) { cstr[i] = '0'; } cstr[DifficultyNum] = '\0'; string str(cstr); do { _nNonce++; _hash = CalculateHash(); //std::cout << _hash ; } while (_hash.substr(0, difficultNum) != str); std::cout << "Block mined: " << _hash << std::endl; }
#include <vector> #include "Block.h" using namespace std; class Blockchain { public: Blockchain(Block* p); vector<Block*> blocks; void AddBlock(string datain); ~Blockchain() { for (int i = 0; i < blocks.size(); i++) { if (blocks[i] != NULL) { delete blocks[i]; blocks[i] = NULL; } } } private: };
#include "Blockchain.h" void Blockchain::AddBlock(string datain) { Block* prev = blocks.back(); Block* newblock = new Block(datain, prev->_hash); newblock->ProofOfWork(DifficultyNum); blocks.push_back(newblock); } Blockchain::Blockchain(Block* p) { blocks.clear(); blocks.push_back(p); }
/* * Updated to C++, zedwood.com 2012 * Based on Olivier Gay's version * See Modified BSD License below: * * FIPS 180-2 SHA-224/256/384/512 implementation * Issue date: 04/30/2005 * http://www.ouah.org/ogay/sha2/ * * Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */
工程文件也能夠在qq羣中找到, 文件名爲 MyBlockChainCppSample_part2
下一個章節介紹持久化
/*
做 者: itdef
歡迎轉帖 請保持文本完整並註明出處
技術博客 http://www.cnblogs.com/itdef/
技術交流羣 羣號碼:432336863
歡迎c c++ windows驅動愛好者 服務器程序員溝通交流
部分老代碼存放地點
http://www.oschina.net/code/list_by_user?id=614253
*/
參考博文:
https://blog.csdn.net/simple_the_best/article/details/78104604
https://jeiwan.cc/posts/building-blockchain-in-go-part-2/