廣度優先,則是用的隊列,將每一層的節點先存入隊列中去,後依次取出隊列中的節點,顯示與當前節點存在邊,可是未被訪問過的節點,也就是下一層與之相聯繫的節點,再將這些節點存入隊列。通過層層迭代,就能夠徹底遍歷java
整個圖。測試
源碼:this
package mygraph; import java.util.LinkedList; import java.util.Queue; public class BFS_Vertex { class Vertex { private char lable; private int val; private boolean wasvisited; Vertex(char lable) { this.lable = lable; } Vertex() { } } private char lable; // 矩陣元素 private Vertex[][] list = new Vertex[20][20]; private Vertex[] vertexList = new Vertex[20]; private int nVerts; // 當前頂點下標 BFS_Vertex() { this.nVerts = 0; for(int i = 0; i < 20; i ++) { for(int j = 0; j < 20; j ++) { list[i][j] = new Vertex(); } } } // 增長一個頂點 public void addVertex(char lable) { vertexList[nVerts++] = new Vertex(lable); } // 增長一條邊 public void addEdge(int start, int end) { list[start][end].val = 1; list[end][start].val = 1; } // 打印矩陣 public void printMatrix() { for (int i = 0; i < nVerts; i++) { for (int j = 0; j < nVerts; j++) { System.out.print(list[i][j].val); } System.out.println(); } } //顯示字符 public void showVertex(int v) { System.out.print(vertexList[v].lable + "\t"); } //得到鄰接未訪問節點 public int getAdjUnvisitedVertex(int v) { for(int j = 0; j < nVerts; j ++) { if((list[v][j].val == 1) && (vertexList[j].wasvisited == false)) { return j; } } return -1; } //BFS public void BFS() { LinkedList q = new LinkedList(); vertexList[0].wasvisited = true; showVertex(0); q.add(0); int ver1, ver2; while(q.size() > 0) { ver1 = (int) q.poll(); ver2 = getAdjUnvisitedVertex(ver1); while(ver2 != -1) { vertexList[ver2].wasvisited = true; showVertex(ver2); q.add(ver2); ver2 = getAdjUnvisitedVertex(ver1); } } for(int j = 0; j < nVerts; j ++) { vertexList[j].wasvisited = false; } } }
測試程序:spa
public static void main(String[] args) { BFS_Vertex ds = new BFS_Vertex(); ds.addVertex('A'); //0 ds.addVertex('B'); //1 ds.addVertex('C'); //2 ds.addVertex('D'); //3 ds.addVertex('E'); //4 ds.addEdge(0, 1); //A-B ds.addEdge(0, 3); //A-D ds.addEdge(1, 4); //B-E ds.addEdge(3, 4); //D-E ds.addEdge(4, 2); //E-C ds.printMatrix(); ds.BFS(); }
測試結果:code
01010
10001
00001
10001
01110
A B D E C