Java 6的併發編程包中的是SynchronousQueue一個沒有數據緩衝的BlockingQueue,生產者線程對其的插入操做put必須等待消費者的移除操做take,反過來也同樣。html
不像ArrayBlockingQueue或LinkedListBlockingQueue,SynchronousQueue內部並無數據緩存空間,你不能調用peek()方法來看隊列中是否有數據元素,由於數據元素只有當你試着取走的時候纔可能存在,不取走而只想偷窺一下是不行的,固然遍歷這個隊列的操做也是不容許的。隊列頭元素是第一個排隊要插入數據的線程,而不是要交換的數據。數據是在配對的生產者和消費者線程之間直接傳遞的,並不會將數據緩衝數據到隊列中。能夠這樣來理解:生產者和消費者互相等待對方,握手,而後一塊兒離開。java
SynchronousQueue的一個使用場景是在線程池裏。Executors.newCachedThreadPool()就使用了SynchronousQueue,這個線程池根據須要(新任務到來時)建立新的線程,若是有空閒線程則會重複使用,線程空閒了60秒後會被回收。node
阻塞隊列的實現方法有許多:算法
阻塞算法實現一般在內部採用一個鎖來保證多個線程中的put()和take()方法是串行執行的。採用鎖的開銷是比較大的,還會存在一種狀況是線程A持有線程B須要的鎖,B必須一直等待A釋放鎖,即便A可能一段時間內由於B的優先級比較高而得不到時間片運行。因此在高性能的應用中咱們經常但願規避鎖的使用。編程
public class NativeSynchronousQueue<E> { boolean putting = false; E item = null; public synchronized E take() throws InterruptedException { while (item == null) wait(); E e = item; item = null; notifyAll(); return e; } public synchronized void put(E e) throws InterruptedException { if (e==null) return; while (putting) wait(); putting = true; item = e; notifyAll(); while (item!=null) wait(); putting = false; notifyAll(); } }
經典同步隊列實現採用了三個信號量,代碼很簡單,比較容易理解:api
public class SemaphoreSynchronousQueue<E> { E item = null; Semaphore sync = new Semaphore(0); Semaphore send = new Semaphore(1); Semaphore recv = new Semaphore(0); public E take() throws InterruptedException { recv.acquire(); E x = item; sync.release(); send.release(); return x; } public void put (E x) throws InterruptedException{ send.acquire(); item = x; recv.release(); sync.acquire(); } }
在多核機器上,上面方法的同步代價仍然較高,操做系統調度器須要上千個時間片來阻塞或喚醒線程,而上面的實現即便在生產者put()時已經有一個消費者在等待的狀況下,阻塞和喚醒的調用仍然須要。緩存
public class Java5SynchronousQueue<E> { ReentrantLock qlock = new ReentrantLock(); Queue waitingProducers = new Queue(); Queue waitingConsumers = new Queue(); static class Node extends AbstractQueuedSynchronizer { E item; Node next; Node(Object x) { item = x; } void waitForTake() { /* (uses AQS) */ } E waitForPut() { /* (uses AQS) */ } } public E take() { Node node; boolean mustWait; qlock.lock(); node = waitingProducers.pop(); if(mustWait = (node == null)) node = waitingConsumers.push(null); qlock.unlock(); if (mustWait) return node.waitForPut(); else return node.item; } public void put(E e) { Node node; boolean mustWait; qlock.lock(); node = waitingConsumers.pop(); if (mustWait = (node == null)) node = waitingProducers.push(e); qlock.unlock(); if (mustWait) node.waitForTake(); else node.item = e; } }
ava 5的實現相對來講作了一些優化,只使用了一個鎖,使用隊列代替信號量也能夠容許發佈者直接發佈數據,而不是要首先從阻塞在信號量處被喚醒。數據結構
Java 6的SynchronousQueue的實現採用了一種性能更好的無鎖算法 — 擴展的「Dual stack and Dual queue」算法。性能比Java5的實現有較大提高。競爭機制支持公平和非公平兩種:非公平競爭模式使用的數據結構是後進先出棧(Lifo Stack);公平競爭模式則使用先進先出隊列(Fifo Queue),性能上二者是至關的,通常狀況下,Fifo一般能夠支持更大的吞吐量,但Lifo能夠更大程度的保持線程的本地化。併發
代碼實現裏的Dual Queue或Stack內部是用鏈表(LinkedList)來實現的,其節點狀態爲如下三種狀況:oracle
這個算法的特色就是任何操做均可以根據節點的狀態判斷執行,而不須要用到鎖。
其核心接口是Transfer,生產者的put或消費者的take都使用這個接口,根據第一個參數來區別是入列(棧)仍是出列(棧)。
/** * Shared internal API for dual stacks and queues. */ static abstract class Transferer { /** * Performs a put or take. * * @param e if non-null, the item to be handed to a consumer; * if null, requests that transfer return an item * offered by producer. * @param timed if this operation should timeout * @param nanos the timeout, in nanoseconds * @return if non-null, the item provided or received; if null, * the operation failed due to timeout or interrupt -- * the caller can distinguish which of these occurred * by checking Thread.interrupted. */ abstract Object transfer(Object e, boolean timed, long nanos); }
TransferQueue實現以下(摘自Java 6源代碼),入列和出列都基於Spin和CAS方法:
/** * Puts or takes an item. */ Object transfer(Object e, boolean timed, long nanos) { /* Basic algorithm is to loop trying to take either of * two actions: * * 1. If queue apparently empty or holding same-mode nodes, * try to add node to queue of waiters, wait to be * fulfilled (or cancelled) and return matching item. * * 2. If queue apparently contains waiting items, and this * call is of complementary mode, try to fulfill by CAS'ing * item field of waiting node and dequeuing it, and then * returning matching item. * * In each case, along the way, check for and try to help * advance head and tail on behalf of other stalled/slow * threads. * * The loop starts off with a null check guarding against * seeing uninitialized head or tail values. This never * happens in current SynchronousQueue, but could if * callers held non-volatile/final ref to the * transferer. The check is here anyway because it places * null checks at top of loop, which is usually faster * than having them implicitly interspersed. */ QNode s = null; // constructed/reused as needed boolean isData = (e != null); for (;;) { QNode t = tail; QNode h = head; if (t == null || h == null) // saw uninitialized value continue; // spin if (h == t || t.isData == isData) { // empty or same-mode QNode tn = t.next; if (t != tail) // inconsistent read continue; if (tn != null) { // lagging tail advanceTail(t, tn); continue; } if (timed && nanos <= 0) // can't wait return null; if (s == null) s = new QNode(e, isData); if (!t.casNext(null, s)) // failed to link in continue; advanceTail(t, s); // swing tail and wait Object x = awaitFulfill(s, e, timed, nanos); if (x == s) { // wait was cancelled clean(t, s); return null; } if (!s.isOffList()) { // not already unlinked advanceHead(t, s); // unlink if head if (x != null) // and forget fields s.item = s; s.waiter = null; } return (x != null)? x : e; } else { // complementary-mode QNode m = h.next; // node to fulfill if (t != tail || m == null || h != head) continue; // inconsistent read Object x = m.item; if (isData == (x != null) || // m already fulfilled x == m || // m cancelled !m.casItem(x, e)) { // lost CAS advanceHead(h, m); // dequeue and retry continue; } advanceHead(h, m); // successfully fulfilled LockSupport.unpark(m.waiter); return (x != null)? x : e; } } }