嘟嘟嘟
此題很可作。
首先從一個暴力的dp入手:令\(dp[i][j]\)表示第\(i\)個數爲\(j\)時的數列個數,因而有\(dp[i][j *a[k] \% M] += dp[i - 1][j]\)。
但這個彷佛只能拿10分。
一個顯然的優化是改爲倍增快速冪的形式,上述dp方程顯然是能夠合併的,即\(dp[x + y][i * j \% M] += dp[x][i] * dp[y][j]\)。
乘的時候暴力乘,這樣\(O(k ^ 2logn)\)能拿到60分。
如今瓶頸在於多項式的乘法。這東西和卷積很像,只不過卷積是加,他倒是乘。那麼怎麼才能把乘變成加呢?取log啊!
而後我就卡在了這裏:取完log下標都不是整數,那不gg了……
最後問了衡水的巨佬,他說你對原根取對數啊!問了一大頓纔想起來,原根的定義是一個數\(g\),知足\(g ^ 0, g ^ 1, g ^ 2 \ldots g ^ {p - 2}\)恰好能湊出\([1, p - 1]\)的全部整數。因而這題就完事了啊!
看來仍是本身原根學的很差,一下子趕快複習一下。
數據範圍挺可愛的,規定了\(x\)不能夠取\(0\),要否則還得分來討論把\(0\)單出來算。
然而集合\(S\)中卻有\(0\)……這得特判一下……ios
#include<cstdio> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<cstdlib> #include<cctype> #include<queue> #include<vector> #include<ctime> #include<assert.h> using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline #define forE(i, x, y) for(int i = head[x], y; (y = e[i].to) && ~i; i = e[i].nxt) typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 1e3 + 5; const int maxM = 4e4 + 5; const ll mod = 1004535809; const ll G = 3; In ll read() { ll ans = 0; char ch = getchar(), las = ' '; while(!isdigit(ch)) las = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(las == '-') ans = -ans; return ans; } In void write(ll x) { if(x < 0) putchar('-'), x = -x; if(x >= 10) write(x / 10); putchar(x % 10 + '0'); } In void MYFILE() { #ifndef mrclr freopen("ha.in", "r", stdin); freopen("bf.out", "w", stdout); #endif } int n, M, X, S, a[maxM], pos[maxM]; int len = 1, lim = 0, rev[maxM]; In ll inc(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;} In ll quickpow(ll a, ll b, ll mod) { ll ret = 1; for(; b; b >>= 1, a = a * a % mod) if(b & 1) ret = ret * a % mod; return ret; } In ll phi(ll n) { ll ret = n; for(int i = 2; i * i <= n; ++i) { if(n % i) continue; ret = ret / i * (i - 1); while(n % i == 0) n /= i; } if(n > 1) ret = ret / n * (n - 1); return ret; } int p[1000], pcnt = 0; In ll getRoot(ll m) { ll Phi = phi(m); pcnt = 0; for(int i = 2; i * i <= Phi; ++i) if(Phi % i == 0) { p[++pcnt] = i; if(Phi / i != i) p[++pcnt] = Phi / i; } for(int g = 2; g <= Phi; ++g) { bool flg = 1; if(quickpow(g, Phi, m) ^ 1) continue; for(int i = 1; i <= pcnt && flg; ++i) if(quickpow(g, p[i], m) == 1) flg = 0; if(flg) return g; } return -1; } In void init() { int g = getRoot(M), tp = 1; for(int i = 0; i < M - 1; ++i, tp = tp * g % M) pos[tp] = i; while(len < M + M) len <<= 1, ++lim; for(int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1)); } In void ntt(ll* a, int len, bool flg) { for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]); for(int i = 1; i < len; i <<= 1) { ll gn = quickpow(G, (mod - 1) / (i << 1), mod); for(int j = 0; j < len; j += (i << 1)) { ll g = 1; for(int k = 0; k < i; ++k, g = g * gn % mod) { ll tp1 = a[j + k], tp2 = a[j + k + i] * g % mod; a[j + k] = (tp1 + tp2) % mod, a[j + k + i] = (tp1 - tp2 + mod) % mod; } } } if(flg) return; reverse(a + 1, a + len); ll inv = quickpow(len, mod - 2, mod); for(int i = 0; i < len; ++i) a[i] = a[i] * inv % mod; } ll c[maxM], A[maxM], B[maxM]; In void mul(ll* a, ll* b) { for(int i = 0; i < len; ++i) //必定要複製到另外一個數組再NTT!由於傳過來的數組a和b多是同一個!(debug到頭禿) { A[i] = i < M - 1 ? a[i] : 0; B[i] = i < M - 1 ? b[i] : 0; } ntt(A, len, 1), ntt(B, len, 1); for(int i = 0; i < len; ++i) a[i] = A[i] * B[i] % mod; ntt(a, len, 0); for(int i = 0; i < M - 1; ++i) a[i] = inc(a[i], a[i + M - 1]); } ll f[maxM], g[maxM]; In ll Quickpow(int n) { f[pos[1]] = 1; for(int i = 1; i <= S; ++i) if(a[i]) g[pos[a[i]]] = 1; for(; n; n >>= 1, mul(g, g)) if(n & 1) mul(f, g); return f[pos[X]]; } int main() { // MYFILE(); n = read(), M = read(), X = read(), S = read(); for(int i = 1; i <= S; ++i) a[i] = read(); init(); write(Quickpow(n)), enter; return 0; }