JavaShuo
欄目
標籤
Distilling Object Detectors with Fine-grained Feature Imitation
時間 2021-01-11
原文
原文鏈接
Motivation 檢測起更focus在物體出現的區域 Detectors care more about local near object regions. 物體出現的周圍特徵變化其實包含了更多重要信息,這是student網絡需要向teacher網絡學習的 註解: 與分類不同,蒸餾方法在檢測中如果進行全特徵模仿的話對子網絡的提升很有限(這裏存疑,文章沒有明確指出全特徵模仿了哪些特徵層)。 這
>>阅读原文<<
相關文章
1.
【Distill 系列:二】CVPR 2019 Distilling Object Detectors with Fine-grained Feature Imitation
2.
OHEM:Training Region-based Object Detectors with Online Hard Example Mining
3.
Training Region-based Object Detectors with Online Hard Example Mining
4.
one-stage object detectors(1)
5.
論文閱讀:DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
6.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
7.
diagnosing error in object detectors 淺析
8.
【論文筆記】:DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
9.
CVPR 2017:Large Margin Object Tracking with Circulant Feature Maps
10.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
更多相關文章...
•
XSL-FO instream-foreign-object 對象
-
XSL-FO 教程
•
XSLT
元素
-
XSLT 教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
JDK13 GA發佈:5大特性解讀
相關標籤/搜索
imitation
distilling
detectors
feature
object...object
object
feature...setfeature
New Feature
with+this
with...connect
MyBatis教程
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
python的安裝和Hello,World編寫
2.
重磅解讀:K8s Cluster Autoscaler模塊及對應華爲雲插件Deep Dive
3.
鴻蒙學習筆記2(永不斷更)
4.
static關鍵字 和構造代碼塊
5.
JVM筆記
6.
無法啓動 C/C++ 語言服務器。IntelliSense 功能將被禁用。錯誤: Missing binary at c:\Users\MSI-NB\.vscode\extensions\ms-vsc
7.
【Hive】Hive返回碼狀態含義
8.
Java樹形結構遞歸(以時間換空間)和非遞歸(以空間換時間)
9.
數據預處理---缺失值
10.
都要2021年了,現代C++有什麼值得我們學習的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【Distill 系列:二】CVPR 2019 Distilling Object Detectors with Fine-grained Feature Imitation
2.
OHEM:Training Region-based Object Detectors with Online Hard Example Mining
3.
Training Region-based Object Detectors with Online Hard Example Mining
4.
one-stage object detectors(1)
5.
論文閱讀:DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
6.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
7.
diagnosing error in object detectors 淺析
8.
【論文筆記】:DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
9.
CVPR 2017:Large Margin Object Tracking with Circulant Feature Maps
10.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
>>更多相關文章<<