JavaShuo
欄目
標籤
diagnosing error in object detectors 淺析
時間 2021-01-16
原文
原文鏈接
目標檢測器中的誤差診斷 誤差來源: [1] localization error (定位誤差) [2] confusion with similar objects (相似目標混淆) [3] confusion with dissimilar objects (非相似目標混淆) [4] confusion with background (背景混淆) [5] object size (目標尺寸)
>>阅读原文<<
相關文章
1.
one-stage object detectors(1)
2.
MaxPool NMS Getting rid of NMS bottlenecks in Two-Stage Object Detectors
3.
ScratchDet: Exploring to train single-shot object detectors from scratch
4.
Bounding box object detectors: understanding YOLO, You Only Look Once
5.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
6.
Training Region-based Object Detectors with Online Hard Example Mining
7.
Object源碼淺析
8.
《Adapting Object Detectors via Selective Cross-Domain Alignment》筆記
9.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
10.
Speed/accuracy trade-offs for modern convolutional object detectors
更多相關文章...
•
ADO Error 對象
-
ADO 教程
•
SQL IN 操作符
-
SQL 教程
•
RxJava操作符(五)Error Handling
•
互聯網組織的未來:剖析GitHub員工的任性之源
相關標籤/搜索
diagnosing
detectors
object...object
error
object
淺析
J2EE淺析
源碼淺析
淺淺
MyBatis教程
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳實踐]瞭解 Eolinker 如何助力遠程辦公
2.
katalon studio 安裝教程
3.
精通hibernate(harness hibernate oreilly)中的一個」錯誤「
4.
ECharts立體圓柱型
5.
零拷貝總結
6.
6 傳輸層
7.
Github協作圖想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其歷史版本
10.
Unity3D(二)遊戲對象及組件
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
one-stage object detectors(1)
2.
MaxPool NMS Getting rid of NMS bottlenecks in Two-Stage Object Detectors
3.
ScratchDet: Exploring to train single-shot object detectors from scratch
4.
Bounding box object detectors: understanding YOLO, You Only Look Once
5.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
6.
Training Region-based Object Detectors with Online Hard Example Mining
7.
Object源碼淺析
8.
《Adapting Object Detectors via Selective Cross-Domain Alignment》筆記
9.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
10.
Speed/accuracy trade-offs for modern convolutional object detectors
>>更多相關文章<<