JavaShuo
欄目
標籤
Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals 學習筆記
時間 2021-01-02
原文
原文鏈接
Abstract and Introduce In this paper, we propose a two-stage framework that incorporates complex spatio-temporal information for effectively regularizing the re-identification results. If a vehicle is
>>阅读原文<<
相關文章
1.
【論文筆記】Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals
2.
Neural Networks and Deep Learning 學習筆記(一)
3.
Neural networks and deep learning學習筆記 -1
4.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
5.
Neural Networks and Deep Learning 【編程筆記】
6.
neural networks and deep learning 筆記(一)
7.
cousera「Neural NetWorks and Deep learning"讀書筆記
8.
Neural Networks and Deep Learning -- Class 3: Shallow neural networks
9.
Neural Networks and Deep Learning
10.
Paper:Sequence to Sequence Learning with Neural Networks
更多相關文章...
•
您已經學習了 XML Schema,下一步學習什麼呢?
-
XML Schema 教程
•
我們已經學習了 SQL,下一步學習什麼呢?
-
SQL 教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Kotlin學習(一)基本語法
相關標籤/搜索
Deep Learning
networks
vehicle
proposals
學習筆記
neural
ReID
learning
deep
path
PHP教程
Thymeleaf 教程
MyBatis教程
學習路線
初學者
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【論文筆記】Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals
2.
Neural Networks and Deep Learning 學習筆記(一)
3.
Neural networks and deep learning學習筆記 -1
4.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
5.
Neural Networks and Deep Learning 【編程筆記】
6.
neural networks and deep learning 筆記(一)
7.
cousera「Neural NetWorks and Deep learning"讀書筆記
8.
Neural Networks and Deep Learning -- Class 3: Shallow neural networks
9.
Neural Networks and Deep Learning
10.
Paper:Sequence to Sequence Learning with Neural Networks
>>更多相關文章<<