目標
在本章節中,算法
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv.imread('box.png',0) # 索引圖像
img2 = cv.imread('box_in_scene.png',0) # 訓練圖像app
sift = cv.xfeatures2d.SIFT_create()ide
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)函數
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)測試
如今咱們設置一個條件,即至少有10個匹配項(由MIN_MATCH_COUNT定義)能夠找到對象。不然,只需顯示一條消息,說明沒有足夠的匹配項。 若是找到足夠的匹配項,咱們將在兩個圖像中提取匹配的關鍵點的位置。他們被傳遞以尋找預期的轉變。一旦得到了這個3x3轉換矩陣,就能夠使用它將索引圖像的角轉換爲訓練圖像中的相應點。而後咱們畫出來。
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w,d = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv.perspectiveTransform(pts,M)
img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
else:
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
matchesMask = None3d
最後,咱們繪製內部線(若是成功找到對象)或匹配關鍵點(若是失敗)。
draw_params = dict(matchColor = (0,255,0), # 用綠色繪製匹配
singlePointColor = None,
matchesMask = matchesMask, # 只繪製內部點
flags = 2)
img3 = cv.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
plt.imshow(img3, 'gray'),plt.show(code
請參閱下面的結果。對象在混亂的圖像中標記爲白色: 