求節點數爲\(n\)的有根樹指望的葉子結點數。(\(n \le 10^9\))c++
神題就打表找規律..函數
方案數就是卡特蘭數,$h_0=1, h_n = \sum_{i=0}^{n-1} h_i h_{n-1-i} \(。 設葉子數量和爲\)f_n\(,則獲得\)f_n = 2 \sum_{i=0}^{n-1} f_i h_{n-1-i}$
設\(H(x)\)表示\(h_n\)的母函數,\(F(x)\)表示\(f_n\)的母函數
容易獲得:\[H(x) = x H^2(x) + 1\] \[F(x) = 2 x F(x) H(x) + x\]即:\[H(x) = \frac{1-\sqrt{1-4x}}{2x}\] \[F(x) = \frac{x}{1-\sqrt{1-4x}}\]發現\[(xH(x))' = \sum_{i=0}^{\infty} (i+1)h_i x^i = \frac{1}{\sqrt{1-4x}} = \frac{F(x)}{x}\]即\[F(x) = \sum_{i=0}^{\infty} (i+1)h_i x^{i+1} = \sum_{i=1}^{\infty} i h_{i-1} x^i = \sum_{i=0}^{\infty} f_i x^i\]即\(f_i = i h_{i-1}\)
因此\(ans = \frac{f_n}{h_n} = \frac{n h_{n-1}}{h_n} = \frac{n(n+1)}{2(2n-1)}\)spa
#include <bits/stdc++.h> using namespace std; typedef long double lf; int main() { lf n; scanf("%Lf", &n); printf("%.9Lf\n", n*(n+1)/2/(n*2-1)); return 0; }