problem1 linknode
假設第$i$種出現的次數爲$n_{i}$,總個數爲$m$,那麼排列數爲$T=\frac{m!}{\prod_{i=1}^{26}(n_{i}!)}$code
而後計算迴文的個數,只須要考慮前一半,獲得個數爲$R$,那麼答案爲$\frac{R}{T}$.blog
爲了防止數字太大致使越界,能夠分解爲質因子的表示方法。get
problem2 linkstring
假設終點所在的位置爲$(tx,ty)$,那麼全部底面是$1x1$的格子$(x,y)$必定知足$(x-tx)mod(3)=0,(y-ty)mod(3)=0$it
把每一個這樣的點拆成兩個點而後創建最小割的圖。io
源點與全部的$b$相連,終點與匯點相連,流量爲無窮,割邊不會在這裏產生。ast
若是不是洞,那麼這個格子拆成的兩個點流量爲1,表示將這個格子設爲洞。class
每一個格子向周圍連邊,流量爲將中間的兩個格子設爲洞的代價。sed
最後最小割就是答案。
problem3 link
首先考慮集合之間的關係。設$f[i][j]$表示前$i$我的分紅$j$個集合的方案數。初始化$f[1][1]=n$。那麼有:
(1)$f[i+1][j+1]=f[i][j]*j$表示新加一個集合,能夠在任意兩個集合之間
(2)$f[i+1][j]=f[i][j]*j*2$表示新加的元素與以前的某一個集合在一塊兒,能夠放在那個集合的先後,因此有$j*2$種方法
(3)$f[i+1][j-1]=f[i][j]*j$表示合併兩個集合,能夠在任意兩個集合之間插入從而進行合併
最後就是對於$f[x][y]$來講,有多少種方式能夠在$n$個位置上放置$x$個使得有$y$個集合而且任意兩個集合不相鄰。令$m=n-(x-y)$,那麼至關於在$m$個位置中放置$y$個,使得任意兩個不相鄰。因爲$f[1][1]=n$那麼這$y$個集合的排列已經計算了,因此如今能夠假設這$y$個元素的第一個放在$m$個位置的第一個位置,那麼第二個位置也不能放置了。因此還剩$m-2$個位置,$y-1$個元素。因爲每放置一個元素其後面的位置就不能放置了,因此能夠把剩下$y-1$個元素的位置與其後面相鄰的位置綁定成一個位置,這樣的話,就是$m-2-(y-1)$個位置,$y-1$個元素,即$C_{m-2-(y-1)}^{y-1}=C_{n-(x-y)-2-(y-1)}^{y-1}=C_{n-x-1}^{y-1}$
code for problem1
#include <cmath> #include <string> #include <vector> class PalindromePermutations { public: double palindromeProbability(const std::string &word) { std::vector<int> h(26, 0); for (auto e : word) { ++h[e - 'a']; } int old_idx = -1; for (int i = 0; i < 26; ++i) { if (h[i] % 2 == 1) { if (old_idx != -1) { return 0.0; } old_idx = i; } } auto total = Compute(h); if (old_idx != -1) { --h[old_idx]; } for (auto &e : h) { e /= 2; } auto target = Compute(h); double result = 1.0; for (int i = 2; i < 50; ++i) { result *= std::pow(i, target[i] - total[i]); } return result; } private: std::vector<int> Compute(const std::vector<int> &h) { std::vector<int> result(50, 0); auto Add = [&](int x, int sgn) { for (int i = 2; i <= x; ++i) { int k = i; for (int j = 2; j * j <= k; ++j) { while (k % j == 0) { result[j] += sgn; k /= j; } } if (k != 1) { result[k] += sgn; } } }; int n = 0; for (auto e : h) { Add(e, -1); n += e; } Add(n, 1); return result; } };
code for problem2
#include <limits> #include <unordered_map> #include <vector> template <typename FlowType> class MaxFlowSolver { static constexpr FlowType kMaxFlow = std::numeric_limits<FlowType>::max(); static constexpr FlowType kZeroFlow = static_cast<FlowType>(0); struct node { int v; int next; FlowType cap; }; public: int VertexNumber() const { return used_index_; } FlowType MaxFlow(int source, int sink) { source = GetIndex(source); sink = GetIndex(sink); int n = VertexNumber(); std::vector<int> pre(n); std::vector<int> cur(n); std::vector<int> num(n); std::vector<int> h(n); for (int i = 0; i < n; ++i) { cur[i] = head_[i]; num[i] = 0; h[i] = 0; } int u = source; FlowType result = 0; while (h[u] < n) { if (u == sink) { FlowType min_cap = kMaxFlow; int v = -1; for (int i = source; i != sink; i = edges_[cur[i]].v) { int k = cur[i]; if (edges_[k].cap < min_cap) { min_cap = edges_[k].cap; v = i; } } result += min_cap; u = v; for (int i = source; i != sink; i = edges_[cur[i]].v) { int k = cur[i]; edges_[k].cap -= min_cap; edges_[k ^ 1].cap += min_cap; } } int index = -1; for (int i = cur[u]; i != -1; i = edges_[i].next) { if (edges_[i].cap > 0 && h[u] == h[edges_[i].v] + 1) { index = i; break; } } if (index != -1) { cur[u] = index; pre[edges_[index].v] = u; u = edges_[index].v; } else { if (--num[h[u]] == 0) { break; } int k = n; cur[u] = head_[u]; for (int i = head_[u]; i != -1; i = edges_[i].next) { if (edges_[i].cap > 0 && h[edges_[i].v] < k) { k = h[edges_[i].v]; } } if (k + 1 < n) { num[k + 1] += 1; } h[u] = k + 1; if (u != source) { u = pre[u]; } } } return result; } MaxFlowSolver() = default; void Clear() { edges_.clear(); head_.clear(); vertex_indexer_.clear(); used_index_ = 0; } void InsertEdge(int from, int to, FlowType cap) { from = GetIndex(from); to = GetIndex(to); AddEdge(from, to, cap); AddEdge(to, from, kZeroFlow); } private: int GetIndex(int idx) { auto iter = vertex_indexer_.find(idx); if (iter != vertex_indexer_.end()) { return iter->second; } int map_idx = used_index_++; head_.push_back(-1); return vertex_indexer_[idx] = map_idx; } void AddEdge(int from, int to, FlowType cap) { node p; p.v = to; p.cap = cap; p.next = head_[from]; head_[from] = static_cast<int>(edges_.size()); edges_.emplace_back(p); } std::vector<node> edges_; std::vector<int> head_; std::unordered_map<int, int> vertex_indexer_; int used_index_ = 0; }; class BlockTheBlockPuzzle { static constexpr int kInfinite = 1000000; public: int minimumHoles(const std::vector<std::string> &S) { MaxFlowSolver<int> solver; int n = static_cast<int>(S.size()); int source = -1; int sink = -2; int tx = -1, ty = -1; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (S[i][j] == '$') { tx = i; ty = j; } } } auto P0 = [&](int i, int j) { return i * n + j; }; auto P1 = [&](int i, int j) { return i * n + j + n * n; }; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (i % 3 == tx % 3 && j % 3 == ty % 3) { if (S[i][j] == '$') { solver.InsertEdge(P1(i, j), sink, kInfinite); } if (S[i][j] == 'b') { solver.InsertEdge(source, P0(i, j), kInfinite); } if (S[i][j] != 'H') { solver.InsertEdge(P0(i, j), P1(i, j), S[i][j] == '.' ? 1 : kInfinite); } if (i + 3 < n) { auto cost = GetCost(S, i + 1, j, i + 2, j); solver.InsertEdge(P1(i, j), P0(i + 3, j), cost); solver.InsertEdge(P1(i + 3, j), P0(i, j), cost); } if (j + 3 < n) { auto cost = GetCost(S, i, j + 1, i, j + 2); solver.InsertEdge(P1(i, j), P0(i, j + 3), cost); solver.InsertEdge(P1(i, j + 3), P0(i, j), cost); } } } } auto result = solver.MaxFlow(source, sink); if (result >= kInfinite) { return -1; } return result; } private: int GetCost(const std::vector<std::string> &s, int x1, int y1, int x2, int y2) { if (s[x1][y1] == 'b' || s[x2][y2] == 'b') { return kInfinite; } int ans = 0; if (s[x1][y1] == '.') { ++ans; } if (s[x2][y2] == '.') { ++ans; } return ans; } };
code for problem3
constexpr int kMod = 1000000007; constexpr int kMax = 2000; int f[kMax + 1][kMax + 1]; int C[kMax + 1][kMax + 1]; class Seatfriends { public: int countseatnumb(int N, int K, int G) { f[1][1] = N; for (int i = 1; i < K; ++i) { for (int j = 1; j <= G; ++j) { long long p = f[i][j]; if (p == 0) { continue; } if (j < G) { (f[i + 1][j + 1] += static_cast<int>(p * j % kMod)) %= kMod; } (f[i + 1][j - 1] += static_cast<int>(p * j % kMod)) %= kMod; (f[i + 1][j] += static_cast<int>(p * 2 * j % kMod)) %= kMod; } } if (K == N) { return f[K][0]; } C[0][0] = 1; for (int i = 1; i <= N; ++i) { C[i][0] = C[i][i] = 1; for (int j = 1; j < i; ++j) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % kMod; } long long ans = 0; for (int j = 1; j <= G; ++j) { ans += static_cast<long long>(f[K][j]) * C[N - K - 1][j - 1] % kMod; } return static_cast<int>(ans % kMod); } };