1.. 簡介ide
spark從RDD依賴上來講分爲窄依賴和寬依賴。spa
其中能夠這樣區分是哪一種依賴:當父RDD的一個partition被子RDD的多個partitions引用到的時候則說明是寬依賴,不然爲窄依賴。scala
寬依賴會觸發shuffe,寬依賴也是一個job鐘不一樣stage的分界線。code
本篇文章主要討論一下窄依賴的場景。blog
2.依賴關係的創建ip
字RDD內部維護着父RDD的依賴關係,下列是依賴的抽象類,其中屬性rdd就是父RDDci
/** * :: DeveloperApi :: * Base class for dependencies. */ @DeveloperApi abstract class Dependency[T] extends Serializable { def rdd: RDD[T] }
3.窄依賴的三種形式:get
窄依賴的抽象類以下:input
/** * :: DeveloperApi :: * Base class for dependencies where each partition of the child RDD depends on a small number * of partitions of the parent RDD. Narrow dependencies allow for pipelined execution. */ @DeveloperApi abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] { /** * Get the parent partitions for a child partition. * @param partitionId a partition of the child RDD * @return the partitions of the parent RDD that the child partition depends upon */ def getParents(partitionId: Int): Seq[Int] override def rdd: RDD[T] = _rdd }
窄依賴形式一:MAP,Filter....it
如上兩個RDD的轉換時經過MAP或者Filter等轉換的,RDD的各個partition都是一一對應的,從執行時能夠並行化的。
子RDD的分區依賴的父RDD的分區ID是同樣不會有變化,這樣的窄依賴實現類以下:
/** * :: DeveloperApi :: * Represents a one-to-one dependency between partitions of the parent and child RDDs. */ @DeveloperApi class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int): List[Int] = List(partitionId) //子RDD的某個分區ID是和父RDD的分區ID是一致的 }
窄依賴方式二:UNION
先來看看其實現類:
/** * :: DeveloperApi :: * Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs. * @param rdd the parent RDD * @param inStart the start of the range in the parent RDD * @param outStart the start of the range in the child RDD * @param length the length of the range */ @DeveloperApi class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int) extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int): List[Int] = { if (partitionId >= outStart && partitionId < outStart + length) { List(partitionId - outStart + inStart) } else { Nil } }
一開始並很差理解上述代碼,可參考下圖,下圖中將各個參數的意義圖形化展現:
因此上述中子RDD分區中的位號(partitionid)和父RDD的位置號(partitionid)相對的差值 (outStart-inStart)
if (partitionId >= outStart && partitionId < outStart + length) 這段代碼的意義:檢查當前子RDD分區ID是否在當前父RDD下的範圍內
partitionId - outStart + inStart 的意思是:當前子RDD分區id(位置號)與差值相減得出其在父RDD上的分區位置號(id)其實就是:partitionId - (outStart-inStart)
窄依賴方式三:join with inputs co-partitioned此場景適用於窄依賴方式一。