(1) 首先,這裏以win32平臺下爲例子.win32下游戲的啓動都是從win32目錄下main文件開始的,便是遊戲的入口函數,以下:html
#include "main.h" #include "AppDelegate.h" #include "cocos2d.h" USING_NS_CC; int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { UNREFERENCED_PARAMETER(hPrevInstance); UNREFERENCED_PARAMETER(lpCmdLine); // create the application instance AppDelegate app;
// 啓動遊戲 return Application::getInstance()->run(); }
(1-1)這裏能夠看出,在入口函數中,首先建立了一個AppDelegate對象,AppDelegate繼承 自CCApplication,在建立APPDelegate對象的時候就會隱式調用CCApplication構造函數,在這個構造函數裏邊會將AppDelegate的this指針傳遞給全局共享對象sm_pSharedApplication,以下:java
Application::Application()
//初始化win32應用程序對象 : _instance(nullptr) , _accelTable(nullptr) { _instance = GetModuleHandle(nullptr);
// 用於控制幀數的計數值 _animationInterval.QuadPart = 0; CC_ASSERT(! sm_pSharedApplication);
// 全局共享對象 sm_pSharedApplication = this; }
(1-2) 接下來調用Application::getInstance()->run();啓動遊戲,以下:node
int Application::run() { PVRFrameEnableControlWindow(false); // Main message loop: LARGE_INTEGER nFreq; LARGE_INTEGER nLast; LARGE_INTEGER nNow; QueryPerformanceFrequency(&nFreq); QueryPerformanceCounter(&nLast); // Initialize instance and cocos2d. // 執行AppDeletegate重載的applicationDidFinishLaunching函數 if (!applicationDidFinishLaunching()) { return 0; } auto director = Director::getInstance(); auto glview = director->getOpenGLView(); // Retain glview to avoid glview being released in the while loop glview->retain(); while(!glview->windowShouldClose()) { QueryPerformanceCounter(&nNow); if (nNow.QuadPart - nLast.QuadPart > _animationInterval.QuadPart) { nLast.QuadPart = nNow.QuadPart; // 主循環,每幀調用 director->mainLoop(); glview->pollEvents(); } else { Sleep(0); } } // Director should still do a cleanup if the window was closed manually. if (glview->isOpenGLReady()) { // 結束,執行清理工做 director->end(); director->mainLoop(); director = nullptr; } glview->release(); return true; }
(1-2-1) 咱們進入到AppDelegate::applicationDidFinishLaunching(),看它究竟作了什麼,咱們以/cocos2d-x-3.2/templates/cpp-template-default/Classes/AppDelegate.cpp爲例:git
bool AppDelegate::applicationDidFinishLaunching() { // initialize director auto director = Director::getInstance(); auto glview = director->getOpenGLView(); if(!glview) {
// 建立glview對象, glview = GLView::create("My Game");
// 這裏設置了和OpenGL相關的一些信息 director->setOpenGLView(glview); } // turn on display FPS director->setDisplayStats(true); // set FPS. the default value is 1.0/60 if you don't call this director->setAnimationInterval(1.0 / 60); // create a scene. it's an autorelease object
// 建立場景 auto scene = HelloWorld::createScene(); // run 運行場景 director->runWithScene(scene); return true; }這裏採用默認的分辨率先建立出遊戲窗口
(1-2-1-1) 能夠看到applicationDidFinishLaunching函數裏面設置了glview對象以後,就開始運行場景,能夠進入GLView::create中看其到底是如何建立GLView對象,一樣,咱們是win32下面看的, 因此找到cocos2d-x-3.2/cocos/platform/desktop/CCGLView.cpp文件:github
GLView* GLView::create(const std::string& viewName) { auto ret = new GLView; if(ret && ret->initWithRect(viewName, Rect(0, 0, 960, 640), 1)) { ret->autorelease(); return ret; } return nullptr; }
從代碼能夠看到只是簡單的new一個GLView對象,咱們進入/cocos2d-x-3.2/cocos/platform/desktop/CCGLView.h看一下它到底是個什麼東西:windows
/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2013-2014 Chukong Technologies Inc. http://www.cocos2d-x.org */ #ifndef __CC_EGLVIEW_DESKTOP_H__ #define __CC_EGLVIEW_DESKTOP_H__ #include "base/CCRef.h" #include "platform/CCCommon.h" #include "platform/CCGLViewProtocol.h" #include "glfw3.h" NS_CC_BEGIN class CC_DLL GLView : public GLViewProtocol, public Ref { public: static GLView* create(const std::string& viewName); static GLView* createWithRect(const std::string& viewName, Rect size, float frameZoomFactor = 1.0f); static GLView* createWithFullScreen(const std::string& viewName); static GLView* createWithFullScreen(const std::string& viewName, const GLFWvidmode &videoMode, GLFWmonitor *monitor); /* *frameZoomFactor for frame. This method is for debugging big resolution (e.g.new ipad) app on desktop. */ //void resize(int width, int height); float getFrameZoomFactor(); //void centerWindow(); virtual void setViewPortInPoints(float x , float y , float w , float h); virtual void setScissorInPoints(float x , float y , float w , float h); bool windowShouldClose(); void pollEvents(); GLFWwindow* getWindow() const { return _mainWindow; } /* override functions */ virtual bool isOpenGLReady() override;
// 刪除窗口,作窗口清理工做 virtual void end() override;
// 交換buffer virtual void swapBuffers() override;
// 設置窗口大小 virtual void setFrameSize(float width, float height) override;
// 設置輸入法狀態 virtual void setIMEKeyboardState(bool bOpen) override; /* * Set zoom factor for frame. This method is for debugging big resolution (e.g.new ipad) app on desktop. */ void setFrameZoomFactor(float zoomFactor); /** Retina support is disabled by default * @note This method is only available on Mac. */ void enableRetina(bool enabled); /** Check whether retina display is enabled. */ bool isRetinaEnabled() const { return _isRetinaEnabled; }; /** Get retina factor */ int getRetinaFactor() const { return _retinaFactor; } protected: GLView(); virtual ~GLView(); bool initWithRect(const std::string& viewName, Rect rect, float frameZoomFactor); bool initWithFullScreen(const std::string& viewName); bool initWithFullscreen(const std::string& viewname, const GLFWvidmode &videoMode, GLFWmonitor *monitor); bool initGlew(); void updateFrameSize(); // GLFW callbacks void onGLFWError(int errorID, const char* errorDesc); void onGLFWMouseCallBack(GLFWwindow* window, int button, int action, int modify); void onGLFWMouseMoveCallBack(GLFWwindow* window, double x, double y); void onGLFWMouseScrollCallback(GLFWwindow* window, double x, double y); void onGLFWKeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods); void onGLFWCharCallback(GLFWwindow* window, unsigned int character); void onGLFWWindowPosCallback(GLFWwindow* windows, int x, int y); void onGLFWframebuffersize(GLFWwindow* window, int w, int h); void onGLFWWindowSizeFunCallback(GLFWwindow *window, int width, int height); bool _captured; bool _supportTouch; bool _isInRetinaMonitor; bool _isRetinaEnabled; int _retinaFactor; // Should be 1 or 2 float _frameZoomFactor; GLFWwindow* _mainWindow; GLFWmonitor* _monitor; float _mouseX; float _mouseY; friend class GLFWEventHandler; private: CC_DISALLOW_COPY_AND_ASSIGN(GLView); }; NS_CC_END // end of namespace cocos2d #endif // end of __CC_EGLVIEW_DESKTOP_H__
GLView繼承自GLViewProtocol,咱們也進入看一下:緩存
/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2013-2014 Chukong Technologies Inc. http://www.cocos2d-x.org *******************************************************/ #ifndef __CCGLVIEWPROTOCOL_H__ #define __CCGLVIEWPROTOCOL_H__ #include "base/ccTypes.h" #include "base/CCEventTouch.h" #include <vector> // 5種屏幕適配策略 enum class ResolutionPolicy { EXACT_FIT, NO_BORDER, SHOW_ALL, FIXED_HEIGHT, FIXED_WIDTH, UNKNOWN, }; NS_CC_BEGIN class CC_DLL GLViewProtocol { public: /** * @js ctor */ GLViewProtocol(); /** * @js NA * @lua NA */ virtual ~GLViewProtocol(); /** Force destroying EGL view, subclass must implement this method. */ virtual void end() = 0; /** Get whether opengl render system is ready, subclass must implement this method. */ virtual bool isOpenGLReady() = 0; /** Exchanges the front and back buffers, subclass must implement this method. */ virtual void swapBuffers() = 0; /** Open or close IME keyboard , subclass must implement this method. */ virtual void setIMEKeyboardState(bool open) = 0; /** * Polls input events. Subclass must implement methods if platform * does not provide event callbacks. */ virtual void pollInputEvents(); /** * Get the frame size of EGL view. * In general, it returns the screen size since the EGL view is a fullscreen view. */ virtual const Size& getFrameSize() const; /** * Set the frame size of EGL view. */ virtual void setFrameSize(float width, float height);
// 獲取可見區域的原點和大小 virtual Size getVisibleSize() const; virtual Vec2 getVisibleOrigin() const; virtual Rect getVisibleRect() const;
//設置設計的size,當須要適配多種設備時,能夠用這個函數定義邏輯座標,cocos2dx會自動將邏輯座標轉化成實際座標,這樣同樣的代碼能夠適配各類設備分辨率 virtual void setDesignResolutionSize(float width, float height, ResolutionPolicy resolutionPolicy); /** Get design resolution size. * Default resolution size is the same as 'getFrameSize'. */ virtual const Size& getDesignResolutionSize() const; /** * Set opengl view port rectangle with points. */ virtual void setViewPortInPoints(float x , float y , float w , float h); /** * Set Scissor rectangle with points. */ virtual void setScissorInPoints(float x , float y , float w , float h); /** * Get whether GL_SCISSOR_TEST is enable */ virtual bool isScissorEnabled(); /** * Get the current scissor rectangle */ virtual Rect getScissorRect() const; virtual void setViewName(const std::string& viewname); const std::string& getViewName() const; /** Touch events are handled by default; if you want to customize your handlers, please override these functions: */
// 觸摸處理函數,能夠重載 virtual void handleTouchesBegin(int num, intptr_t ids[], float xs[], float ys[]); virtual void handleTouchesMove(int num, intptr_t ids[], float xs[], float ys[]); virtual void handleTouchesEnd(int num, intptr_t ids[], float xs[], float ys[]); virtual void handleTouchesCancel(int num, intptr_t ids[], float xs[], float ys[]); /** * Get the opengl view port rectangle. */ const Rect& getViewPortRect() const; /** * Get scale factor of the horizontal direction. */ float getScaleX() const; /** * Get scale factor of the vertical direction. */ float getScaleY() const; /** returns the current Resolution policy */ ResolutionPolicy getResolutionPolicy() const { return _resolutionPolicy; } protected: void updateDesignResolutionSize(); void handleTouchesOfEndOrCancel(EventTouch::EventCode eventCode, int num, intptr_t ids[], float xs[], float ys[]); // real screen size Size _screenSize; // resolution size, it is the size appropriate for the app resources. Size _designResolutionSize; // the view port size Rect _viewPortRect; // the view name std::string _viewName; float _scaleX; float _scaleY; ResolutionPolicy _resolutionPolicy; }; // end of platform group /// @} NS_CC_END #endif /* __CCGLVIEWPROTOCOL_H__ */
以看到CCEGLView和GLViewProtocol是顯示窗口,負責窗口級別的功能管理和實現, 包括:座標和縮放管理, 畫圖工具,按鍵事件;服務器
(1-2-1-2) 建立glview對象以後,導演類Director就把glview設置進遊戲,其中包括不少配置信息, 如設置屏幕大小適配相關的函數getDesignResolutionSize, 以下:app
void Director::setOpenGLView(GLView *openGLView) { CCASSERT(openGLView, "opengl view should not be null"); if (_openGLView != openGLView) { // Configuration. Gather GPU info Configuration *conf = Configuration::getInstance(); conf->gatherGPUInfo(); CCLOG("%s\n",conf->getInfo().c_str()); if(_openGLView) _openGLView->release(); _openGLView = openGLView; _openGLView->retain(); // set size 設置屏幕大小適配相關的函數 _winSizeInPoints = _openGLView->getDesignResolutionSize(); createStatsLabel(); if (_openGLView) { setGLDefaultValues(); } // 完成初始化 _renderer->initGLView(); CHECK_GL_ERROR_DEBUG(); if (_eventDispatcher) { _eventDispatcher->setEnabled(true); } } }
(1-2-1-2-1) 咱們進入initGLView看看它都作了什麼初始化工做,找到/cocos2d-x-3.2/cocos/renderer/CCRenderer.cpp:ide
void Renderer::initGLView() { #if CC_ENABLE_CACHE_TEXTURE_DATA _cacheTextureListener = EventListenerCustom::create(EVENT_RENDERER_RECREATED, [this](EventCustom* event){ /** listen the event that renderer was recreated on Android/WP8 */ this->setupBuffer(); }); Director::getInstance()->getEventDispatcher()->addEventListenerWithFixedPriority(_cacheTextureListener, -1); #endif // 填充索引緩衝 setupIndices(); setupBuffer(); _glViewAssigned = true; }
(1-2-1-2-1-1) 進入setupIndices以下:
void Renderer::setupIndices() { for( int i=0; i < VBO_SIZE; i++) {
// 計算索引緩衝值 _indices[i*6+0] = (GLushort) (i*4+0); _indices[i*6+1] = (GLushort) (i*4+1); _indices[i*6+2] = (GLushort) (i*4+2); _indices[i*6+3] = (GLushort) (i*4+3); _indices[i*6+4] = (GLushort) (i*4+2); _indices[i*6+5] = (GLushort) (i*4+1); } }
(1-2-1-2-1-2) 進入setupBuffer以下:
void Renderer::setupBuffer() {
// 若是使用VAO if(Configuration::getInstance()->supportsShareableVAO()) {
// 初始化VAO和VBO setupVBOAndVAO(); } else {
// 初始化VBO setupVBO(); } }
(1-2-1-2-1-2-1) 進入setupVBOAndVAO和setupVBO, 開始調用OpenGL API進行頂點數據指定,具體意義參見基於Cocos2d-x學習OpenGL ES 2.0系列——編寫本身的shader(2):
void Renderer::setupVBOAndVAO() { glGenVertexArrays(1, &_quadVAO); GL::bindVAO(_quadVAO); glGenBuffers(2, &_buffersVBO[0]); glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_quads[0]) * VBO_SIZE, _quads, GL_DYNAMIC_DRAW); // vertices glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_POSITION); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, vertices)); // colors glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_COLOR); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, colors)); // tex coords glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_TEX_COORD); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, texCoords)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * VBO_SIZE * 6, _indices, GL_STATIC_DRAW); // Must unbind the VAO before changing the element buffer. GL::bindVAO(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); CHECK_GL_ERROR_DEBUG(); } void Renderer::setupVBO() { glGenBuffers(2, &_buffersVBO[0]); mapBuffers(); }
(1-2-2) 在applicationDidFinishLaunching裏面建立場景以後,就調用director->mainLoop();開始遊戲主循環了.咱們進入mainLoop看它作了什麼, win32下咱們找到cocos2d-x-3.2/cocos/base/CCDirector.cpp:
void DisplayLinkDirector::mainLoop() { if (_purgeDirectorInNextLoop) { _purgeDirectorInNextLoop = false;
// 主循環結束,清除工做 purgeDirector(); } else if (! _invalid) {
// 渲染場景 drawScene(); // release the objects
// 釋放對象:內存池裏以前經過autorelease加入的對象引用計數減 1. PoolManager::getInstance()->getCurrentPool()->clear(); } }
mainLoop主要完成三個動做:
1 判斷是否須要釋放 CCDirector,若是須要,則刪除 CCDirector 佔用的資源。一般,遊戲結束時纔會執行這個步驟。
2 調用 drawScene()方法,繪製當前場景並進行其餘必要的處理。
3 彈出自動回收池,使得這一幀被放入自動回收池的對象所有釋放。
(1-2-2-1) 因而可知,mainLoop()把內存管理之外的操做都交給了 drawScene()方法,所以關鍵的步驟都在 drawScene()方法之中。下面是 drawScene()方法的實現:
// Draw the Scene void Director::drawScene() { // calculate "global" dt
// 計算全局幀間時間差 dt calculateDeltaTime(); // skip one flame when _deltaTime equal to zero. if(_deltaTime < FLT_EPSILON) { return; } if (_openGLView) { _openGLView->pollInputEvents(); } //tick before glClear: issue #533 if (! _paused) {
// 啓動定時器 _scheduler->update(_deltaTime); _eventDispatcher->dispatchEvent(_eventAfterUpdate); } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); /* to avoid flickr, nextScene MUST be here: after tick and before draw. XXX: Which bug is this one. It seems that it can't be reproduced with v0.9 */ if (_nextScene) {
// 若是有,設置下一個場景 setNextScene(); }
// 保存原來的模型視圖(ModelView)矩陣 pushMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); // draw the scene if (_runningScene) {
// 開始繪製場景 _runningScene->visit(_renderer, Mat4::IDENTITY, false);
// 事件分發 _eventDispatcher->dispatchEvent(_eventAfterVisit); } // draw the notifications node if (_notificationNode) {
// 處理通知節點 _notificationNode->visit(_renderer, Mat4::IDENTITY, false); } if (_displayStats) { showStats(); } // 開始渲染場景 _renderer->render(); _eventDispatcher->dispatchEvent(_eventAfterDraw); popMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); _totalFrames++; // swap buffers 交換緩衝區 if (_openGLView) { _openGLView->swapBuffers(); } if (_displayStats) { calculateMPF(); } }
能夠發現drawScene主要用於處理 OpenGL 和一些細節,如計算 FPS、幀間時間差等,這裏咱們主要進行了如下 3 個操做。
1 調用了定時調度器的 update 方法,引起定時器事件。
2 若是場景須要被切換,則調用 setNextScene 方法,在顯示場景前切換場景。
3 調用當前場景的 visit 方法,將當前場景加入渲染隊列,並經過render統一渲染。
(1-2-2-1-1) 咱們進入到visit方法裏面,看它怎樣把每個節點添加到渲染隊列, 這裏咱們找到/cocos2d-x-3.2/cocos/2d/CCNode.cpp:
void Node::visit(Renderer* renderer, const Mat4 &parentTransform, uint32_t parentFlags) { // quick return if not visible. children won't be drawn. if (!_visible) { return; }
// 設置_modelViewTransform矩陣 uint32_t flags = processParentFlags(parentTransform, parentFlags); // IMPORTANT: // To ease the migration to v3.0, we still support the Mat4 stack, // but it is deprecated and your code should not rely on it Director* director = Director::getInstance(); director->pushMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); director->loadMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW, _modelViewTransform); int i = 0; if(!_children.empty()) { sortAllChildren(); // draw children zOrder < 0 for( ; i < _children.size(); i++ ) { auto node = _children.at(i); if ( node && node->_localZOrder < 0 ) node->visit(renderer, _modelViewTransform, flags); else break; } // self draw this->draw(renderer, _modelViewTransform, flags); for(auto it=_children.cbegin()+i; it != _children.cend(); ++it) (*it)->visit(renderer, _modelViewTransform, flags); } else { this->draw(renderer, _modelViewTransform, flags); } director->popMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); // FIX ME: Why need to set _orderOfArrival to 0?? // Please refer to https://github.com/cocos2d/cocos2d-x/pull/6920 // reset for next frame // _orderOfArrival = 0; }
(1-2-2-1-1-1) 對節點的全部孩子排序,經過調用draw函數,首先繪製ZOrder<0的節點,在繪製自身,最後繪製ZOrder>0的節點. 咱們進入draw看看它作些什麼. 注意,visit和draw都是虛函數, 以sprite爲例,咱們進入到/cocos2d-x-3.2/cocos/2d/CCSprite.cpp:
void Sprite::draw(Renderer *renderer, const Mat4 &transform, uint32_t flags) { // Don't do calculate the culling if the transform was not updated _insideBounds = (flags & FLAGS_TRANSFORM_DIRTY) ? renderer->checkVisibility(transform, _contentSize) : _insideBounds; if(_insideBounds) { _quadCommand.init(_globalZOrder, _texture->getName(), getGLProgramState(), _blendFunc, &_quad, 1, transform); renderer->addCommand(&_quadCommand);
// #if CC_SPRITE_DEBUG_DRAW _customDebugDrawCommand.init(_globalZOrder); _customDebugDrawCommand.func = CC_CALLBACK_0(Sprite::drawDebugData, this); renderer->addCommand(&_customDebugDrawCommand); #endif //CC_SPRITE_DEBUG_DRAW } }物理引擎相關繪製邊界
(1-2-2-1-1-1-1) 從代碼中能夠看出,Sprite的draw函數裏面並無作實際的渲染工做,而是用QuadCommand命令將渲染操做打包,加入到渲染隊列裏面,在drawscene最後經過調用render()進行統一渲染;咱們能夠看看_quadCommand.init裏面究竟作了什麼,找到/cocos2d-x-3.2/cocos/renderer/CCQuadCommand.cpp:
void QuadCommand::init(float globalOrder, GLuint textureID, GLProgramState* glProgramState, BlendFunc blendType, V3F_C4B_T2F_Quad* quad, ssize_t quadCount, const Mat4 &mv) { CCASSERT(glProgramState, "Invalid GLProgramState"); CCASSERT(glProgramState->getVertexAttribsFlags() == 0, "No custom attributes are supported in QuadCommand"); _globalOrder = globalOrder; _quadsCount = quadCount; _quads = quad; // 設置MV矩陣 _mv = mv; if( _textureID != textureID || _blendType.src != blendType.src || _blendType.dst != blendType.dst || _glProgramState != glProgramState) { // _textureID = textureID; // _blendType就是咱們的BlendFunc混合函數 _blendType = blendType; _glProgramState = glProgramState; // 生成材質ID generateMaterialID(); } }
(1-2-2-1-1-1-1-1) 咱們在進入到generateMaterialID()函數裏面看看:
void QuadCommand::generateMaterialID() { if(_glProgramState->getUniformCount() > 0) { _materialID = QuadCommand::MATERIAL_ID_DO_NOT_BATCH; } else { int glProgram = (int)_glProgramState->getGLProgram()->getProgram(); int intArray[4] = { glProgram, (int)_textureID, (int)_blendType.src, (int)_blendType.dst}; _materialID = XXH32((const void*)intArray, sizeof(intArray), 0); } }
從這裏咱們能夠看出, 咱們的材質ID(_materialID)最終是要由shader(glProgram)、混合類型(_blendType)、紋理ID(_textureID)組成的, 因此這三樣東西若是有誰不同的話,那就沒法生成相同的材質ID,也就沒法在同一 個批次裏進行渲染了。
(1-2-2-1-2) 如今,咱們回到(1-2-2-1-1-1)的draw函數, 經過上面將渲染指令初始化以後,就是將打包好的渲染命令添加到渲染隊列裏面了.這裏只需簡單調用renderer->addCommand(&_quadCommand);便可. 這樣,(1-2-2-1)處的drawscene函數中,visit經過調用派生類節點添加渲染指令到渲染隊列的工做已經完成了.接下來要作的就是作實際的渲染工做了.3.x版本與以前版本不一樣,是在drawscene最後經過調用render()函數進行統一渲染的,咱們進入render()看一下,找到cocos2d-x-3.2/cocos/renderer/CCRenderer.cpp:
void Renderer::render() { //Uncomment this once everything is rendered by new renderer //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //TODO setup camera or MVP _isRendering = true; if (_glViewAssigned) { // cleanup _drawnBatches = _drawnVertices = 0; //Process render commands //1. Sort render commands based on ID for (auto &renderqueue : _renderGroups) { renderqueue.sort(); } visitRenderQueue(_renderGroups[0]); flush(); } clean(); _isRendering = false; }
從代碼能夠看出,從Cocos2d-x3.0開始,Cocos2d-x引入了新的渲染流程,它不像2.x版本 直接在每個node中的draw函數中直接調用OpenGL代碼進行圖形渲染,而是經過各類RenderCommand封裝起來,而後添加到一個 CommandQueue隊列裏面去,而如今draw函數的做用就是在此函數中設置好相對應的RenderCommand參數,而後把此 RenderCommand添加到CommandQueue中。最後在每一幀結束時調用renderer函數進行渲染,在renderer函數中會根據 ID對RenderCommand進行排序,而後才進行渲染。
(1-2-2-1-2-1) 如今咱們進入visitRenderQueue函數看看它作了什麼動做:
void Renderer::visitRenderQueue(const RenderQueue& queue) { ssize_t size = queue.size(); for (ssize_t index = 0; index < size; ++index) { auto command = queue[index]; auto commandType = command->getType();
if(RenderCommand::Type::QUAD_COMMAND == commandType) { flush3D(); auto cmd = static_cast<QuadCommand*>(command); //Batch quads
// 若是Quad數據量超過VBO的大小,那麼調用繪製,將緩存的命令所有繪製 if(_numQuads + cmd->getQuadCount() > VBO_SIZE) { CCASSERT(cmd->getQuadCount()>= 0 && cmd->getQuadCount() < VBO_SIZE, "VBO is not big enough for quad data, please break the quad data down or use customized render command"); //Draw batched quads if VBO is full drawBatchedQuads(); }
// 這個處理主要是把命令存入_batchedQuadCommands中,若是若是Quad數據量超過VBO的大小,那麼調用繪製,將緩存的命令所有繪製.
// 若是一直沒有超過VBO的大小,drawBatchedQuads繪製函數將在flush被調用時調用. // _batchedQuadCommands.push_back(cmd); memcpy(_quads + _numQuads, cmd->getQuads(), sizeof(V3F_C4B_T2F_Quad) * cmd->getQuadCount());
// 經過MV矩陣, convertToWorldCoordinates(_quads + _numQuads, cmd->getQuadCount(), cmd->getModelView()); _numQuads += cmd->getQuadCount(); } else if(RenderCommand::Type::GROUP_COMMAND == commandType) { flush(); int renderQueueID = ((GroupCommand*) command)->getRenderQueueID(); visitRenderQueue(_renderGroups[renderQueueID]); } else if(RenderCommand::Type::CUSTOM_COMMAND == commandType) { flush(); auto cmd = static_cast<CustomCommand*>(command); cmd->execute(); } else if(RenderCommand::Type::BATCH_COMMAND == commandType) { flush(); auto cmd = static_cast<BatchCommand*>(command); cmd->execute(); } else if (RenderCommand::Type::MESH_COMMAND == commandType) { flush2D(); auto cmd = static_cast<MeshCommand*>(command); if (_lastBatchedMeshCommand == nullptr || _lastBatchedMeshCommand->getMaterialID() != cmd->getMaterialID()) { flush3D(); cmd->preBatchDraw(); cmd->batchDraw(); _lastBatchedMeshCommand = cmd; } else { cmd->batchDraw(); } } else { CCLOGERROR("Unknown commands in renderQueue"); } } }將命令緩存起來,先不調用繪製轉換成世界座標// 記錄下四邊形數量
從代碼中,咱們看到RenderCommand類型有QUAD_COMMAND,CUSTOM_COMMAND,BATCH_COMMAND,GROUP_COMMAND,MESH_COMMAND五種,OpenGL的API調用是在Renderer::drawBatchedQuads()、BatchCommand::execute()中。經過上面代碼的註釋,能夠看到最經常使用的QUAD_COMMAND類型的渲染命令的處理過程.
(1-2-2-1-2-1-1) 若是Quad數據量超過VBO的大小(VBO_SIZE = 65536 / 6;), 則會調用drawBatchedQuads進行批量渲染:
void Renderer::drawBatchedQuads() { //TODO we can improve the draw performance by insert material switching command before hand. int quadsToDraw = 0; int startQuad = 0; //Upload buffer to VBO if(_numQuads <= 0 || _batchedQuadCommands.empty()) { return; } // 是否支持VAO if (Configuration::getInstance()->supportsShareableVAO()) { //Set VBO data 綁定VBO數據, 激活緩衝區對象 glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]); // option 1: subdata // glBufferSubData(GL_ARRAY_BUFFER, sizeof(_quads[0])*start, sizeof(_quads[0]) * n , &_quads[start] ); // option 2: data // glBufferData(GL_ARRAY_BUFFER, sizeof(quads_[0]) * (n-start), &quads_[start], GL_DYNAMIC_DRAW); // option 3: orphaning + glMapBuffer
// 用數據分配和初始化緩衝區對象 glBufferData(GL_ARRAY_BUFFER, sizeof(_quads[0]) * (_numQuads), nullptr, GL_DYNAMIC_DRAW);
// OPENGL 緩衝區對象(buffer object),容許應用程序顯式地指定把哪些數據存儲在圖形服務器或顯存中
// 返回指向緩衝區的指針, 緩衝一經具體使用以後,只須要改變緩衝區的內容,即在glMapBuffer和glUnmapBuffer之間改變數據便可 void *buf = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY); memcpy(buf, _quads, sizeof(_quads[0])* (_numQuads)); glUnmapBuffer(GL_ARRAY_BUFFER); // 解除綁定 glBindBuffer(GL_ARRAY_BUFFER, 0); //Bind VAO 綁定VAO GL::bindVAO(_quadVAO); } else { #define kQuadSize sizeof(_quads[0].bl) glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_quads[0]) * _numQuads , _quads, GL_DYNAMIC_DRAW); GL::enableVertexAttribs(GL::VERTEX_ATTRIB_FLAG_POS_COLOR_TEX); // vertices glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices)); // colors glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors)); // tex coords glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]); } //Start drawing verties in batch for(const auto& cmd : _batchedQuadCommands) { auto newMaterialID = cmd->getMaterialID(); if(_lastMaterialID != newMaterialID || newMaterialID == QuadCommand::MATERIAL_ID_DO_NOT_BATCH) { //Draw quads if(quadsToDraw > 0) {
// 四邊形均可以由2個三角形組合而成,指定6個索引點(畫出2個GL_TRIANGLES) glDrawElements(GL_TRIANGLES, (GLsizei) quadsToDraw*6, GL_UNSIGNED_SHORT, (GLvoid*) (startQuad*6*sizeof(_indices[0])) ); _drawnBatches++; _drawnVertices += quadsToDraw*6; startQuad += quadsToDraw; quadsToDraw = 0; } //Use new material cmd->useMaterial(); _lastMaterialID = newMaterialID; } quadsToDraw += cmd->getQuadCount(); } //Draw any remaining quad if(quadsToDraw > 0) {
// 畫剩下的四邊形 glDrawElements(GL_TRIANGLES, (GLsizei) quadsToDraw*6, GL_UNSIGNED_SHORT, (GLvoid*) (startQuad*6*sizeof(_indices[0])) ); _drawnBatches++; _drawnVertices += quadsToDraw*6; } if (Configuration::getInstance()->supportsShareableVAO()) { //Unbind VAO 接除綁定VAO GL::bindVAO(0); } else { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } _batchedQuadCommands.clear(); _numQuads = 0; }
附註:5種渲染類型:
1. QUAD_COMMAND:QuadCommand類繪製精靈等。全部繪製圖片的命令都會調用到這裏,處理這個類型命令的代碼就是繪製貼圖的openGL代碼。
2. CUSTOM_COMMAND:CustomCommand類自定義繪製,本身定義繪製函數,在調用繪製時只需調用已經傳進來的回調函數就能夠,裁剪節點,繪製圖形節點都採用這個繪製,把繪製函數定義在本身的類裏。這種類型的繪製命令不會在處理命令的時候調用任何一句openGL代碼,而是調用你寫好並設置給func的繪製函數。
3. BATCH_COMMAND:BatchCommand類批處理繪製,批處理精靈和粒子,其實它相似於自定義繪製,也不會再render函數中出現任何一句openGL函數。
4. GROUP_COMMAND:GroupCommand類繪製組,一個節點包括兩個以上繪製命令的時候,把這個繪製命令存儲到另一個_renderGroups中的元素中,並把這個元素的指針做爲一個節點存儲到_renderGroups[0]中。
5. MESH_COMMAND :