感謝scipy.orghtml
在近期的tensorflow學習中,我發現,numpy做爲python的數學運算庫,學習tensorflow過程當中常常須要用到,而numpy的random函數功能不少,每次用的時候都須要另行google,因此我決定將它的經常使用用法彙總一下。python
import numpy as numpy
既然是講隨機數,衆所周知,計算機世界的隨機數都是僞隨機,都有一個叫作種子(seed)的東西數組
numpy.random.seed(seed=None)
dom
能夠經過輸入int或arrat_like來使得隨機的結果固定函數
>>> np.random.rand(3, 3) array([[0.43267997, 0.72368429, 0.72366367], [0.28496145, 0.44920635, 0.8924199 ], [0.31974178, 0.55658518, 0.01755763]]) >>> np.random.rand(3, 3) array([[0.75196574, 0.33708946, 0.64345504], [0.85048542, 0.18109553, 0.69524277], [0.06390142, 0.30589554, 0.51643863]]) >>> np.random.seed(5) >>> np.random.rand(3, 3) array([[0.22199317, 0.87073231, 0.20671916], [0.91861091, 0.48841119, 0.61174386], [0.76590786, 0.51841799, 0.2968005 ]]) >>> np.random.seed(5) >>> np.random.rand(3, 3) rray([[0.22199317, 0.87073231, 0.20671916], [0.91861091, 0.48841119, 0.61174386], [0.76590786, 0.51841799, 0.2968005 ]])
numpy.random.rand(d0,d1...dn)
學習
>>> np.random.rand(3, 3) # shape: 3*3 array([[0.94340617, 0.96183216, 0.88510322], [0.44543261, 0.74930098, 0.73372814], [0.29233667, 0.3940114 , 0.7167332 ]]) >>> np.random.rand(3, 3, 3) # shape: 3*3*3 array([[[0.64794467, 0.17450186, 0.01016758], [0.36435826, 0.37682548, 0.19501414], [0.26438152, 0.28520726, 0.01617747]], [[0.43803165, 0.4096238 , 0.77309074], [0.42280405, 0.02623488, 0.82081416], [0.7611891 , 0.84823656, 0.64481959]], [[0.24420439, 0.62015463, 0.13258205], [0.87108689, 0.14997182, 0.43524276], [0.58190788, 0.32348629, 0.12158832]]])
numpy.random.randn(d0,d1,…,dn)
google
>>> np.random.randn() # 當沒有輸入參數時,僅返回一個值 -0.7377941002942127 >>> np.random.randn(3, 3) array([[-0.20565666, 1.23580939, -0.27814622], [ 0.53923344, -2.7092927 , 1.27514363], [ 0.38570597, -1.90564739, -0.10438987]]) >>> np.random.randn(3, 3, 3) array([[[ 0.64235451, -1.64327647, -1.27366899], [ 0.69706885, 0.75246699, 2.16235763], [ 1.01141338, -0.19188666, 0.07684428]], [[ 1.34367043, -0.76837057, 0.27803575], [ 0.97007349, 0.41297538, -1.65008923], [-3.78282033, 0.67567421, -0.0753552 ]], [[-0.86540385, 0.14603592, 0.29318291], [-0.8167798 , -0.25492782, -0.58758 ], [ 0.02612474, 0.17882535, -0.95483945]]])
numpy.random.randint(low, high=None, size=None, dtype=’l’)
code
>>> np.random.randint(1, size = 10) # 返回[0, 1)之間的整數,因此只有0 array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) >>> np.random.randint(1, 5) # 返回[1, 5)之間隨機的一個數字 2 >>> np.random.randint(-3, 3, size=(3, 3)) array([[-1, -2, -2], [-3, -1, -2], [ 2, 2, 2]])
numpy.random.random_sample(size=None)
htm
>>> np.random.random_sample() 0.47108547995356098 >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]])
相似功能的還有:numpy.random.random(size=None)
numpy.random.ranf(size=None)
numpy.random.sample(size=None)
ip
numpy.random.choice(a, size=None, replace=True, p=None)
>>> np.random.choice(5, 3) # 這個等同於np.random.randint(0,5,3) array([0, 3, 4]) >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) >>> np.random.choice(5, 3, replace=False) array([3,1,0]) >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11')
感謝您的閱讀🙏