統計效果:java
代碼部分:sql
import org.apache.spark.sql.hive.HiveContext import org.apache.spark.{Logging, SparkConf, SparkContext} import org.apache.spark.sql.{DataFrame, Row, SaveMode, _} import com.alibaba.fastjson.{JSON, JSONObject} import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.spark.sql.types.StringType import scala.collection.mutable.ArrayBuffer /** * 功能:對hive表的列信息進行統計。 * 統計結果包括: * 1.包含每列的平均值,中位數,最小值最大值,方差,惟一值,缺失值,列類型。 * 2.列的直方圖分佈(字符串top10,數值列10個區間),四分位圖分佈(數值列)。 * * 實現邏輯: * 1.利用spark的describe函數獲取到最大值,最小值,均值,方差等。 * 2。利用sql:獲取惟一值及缺失值,sql樣例以下: * select count(distinct(id)) as unique_id , count(distinct(name)) as unique_name, sum(case when id is null then 1 else 0 end) as missing_id, sum(case when name is null then 1 else 0 end) as missing_name, sum(1) as totalrows from zpcrcf * 結果: * +---------+-----------+----------+------------+---------+ * |unique_id|unique_name|missing_id|missing_name|totalrows| * +---------+-----------+----------+------------+---------+ * | 14| 12| 0| 0| 14| * +---------+-----------+----------+------------+---------+ * * 3.利用sql:獲取四分位圖,sql樣例以下; * select 'Quartile_id' as colName, ntil, max(id) as num from (select id, ntile(4) OVER (order by id)as ntil from zpcrcf) tt group by ntil * 結果: * +------------+----+---+ * | colName|ntil|num| * +------------+----+---+ * | Quartile_id| 1| 3| * | Quartile_id| 2| 7| * | Quartile_id| 3| 14| * | Quartile_id| 4|100| * * 4.數值型直方圖10階段分區間,經過最大值減最小值,獲取各個區間內的分佈。 * sql樣例以下: * select 'MathHistogram_age' as colName, partNum, count(1) as num from ( select age, (case when (age >= 29.0 and age <= 36.1) then 1 when (age > 36.1 and age <= 43.2) then 2 when (age > 43.2 and age <= 50.3) then 3 when (age > 50.3 and age <= 57.4) then 4 when (age > 57.4 and age <= 64.5) then 5 when (age > 64.5 and age <= 71.6) then 6 when (age > 71.6 and age <= 78.69999999999999) then 7 when (age > 78.69999999999999 and age <= 85.8) then 8 when (age > 85.8 and age <= 92.9) then 9 when (age > 92.9 and age <= 100.0) then 10 else 0 end ) as partNum from zpcrcf) temptableScala group by partNum * 結果: * +-----------------+-------+---+ * | colName|partNum|num| * +-----------------+-------+---+ * |MathHistogram_age| 0| 1| * |MathHistogram_age| 1| 3| * |MathHistogram_age| 10| 10| * | MathHistogram_id| 1| 10| * | MathHistogram_id| 2| 3| * | MathHistogram_id| 10| 1| * +-----------------+-------+---+ * * * * Created by zpc on 2016/4/26. */ object DataFrameVisiualize extends Logging { def runforstatistic(hiveContext: HiveContext, params: JSONObject) = { val arr = params.getJSONArray("targetType") var i = 0 while( arr != null && i < arr.size()){ val obj = arr.getJSONObject(i) if("dataset".equalsIgnoreCase(obj.getString("targetType"))){ val tableNameKey = obj.getString("targetName") val tableName = params.getString(tableNameKey) val user = params.getString("user") run(hiveContext, tableName, user) } i = i+1 } } def run(hiveContext: HiveContext, tableName: String, user: String) = { val pathParent = s"/user/$user/mlaas/tableStatistic/$tableName" // val conf = new SparkConf().setAppName("DataFrameVisiualizeJob") // val sc = new SparkContext(conf) // val hiveContext = new HiveContext(sc) // val sqlContext = new SQLContext(sc) //0.獲取DB的schema信息 val schemadf = hiveContext.sql("desc " + tableName) //schema信息落地 val filePathSchema = pathParent + "/schemajson" schemadf.write.mode(SaveMode.Overwrite).format("json").save(filePathSchema) //1.加載表到dataframe val df = hiveContext.sql("select * from " + tableName) //2.獲取dataframe的describe信息,默認爲獲取到的都爲數值型列 val dfdesc = df.describe() // //3.描述信息落地 // val filePath = pathParent + "/describejson" // des.write.mode(SaveMode.Overwrite).format("json").save(filePath) // val dfdesc = sqlContext.read.format("json").load(filePath) //4.列信息區分爲mathColArr 和 strColArr val mathColArr = dfdesc.columns.filter(!_.equalsIgnoreCase("summary")) val (colMin, colMax, colMean, colStddev, colMedian) = getDesfromDF(dfdesc, mathColArr) val allColArr = df.columns // col type 存在vector類型,此處僅統計string和num類型的 val typeMap = df.dtypes.toMap val strColArr = allColArr.filter(typeMap.get(_).get.equals(StringType.toString)) // val strColArr = allColArr.filter(!_.equalsIgnoreCase("summary")).diff(mathColArr) saveRecords(hiveContext, tableName, 100, pathParent + "/recordsjson") val jsonobj = getAllStatistics(hiveContext, tableName, allColArr, strColArr, mathColArr, 10, colMin, colMax) jsonobj.put("colMin", colMin) jsonobj.put("colMax", colMax) jsonobj.put("colMean", colMean) jsonobj.put("colStddev", colStddev) jsonobj.put("colMedian", colMedian) val jsonStr = jsonobj.toString val conf1 = new Configuration() val fs = FileSystem.get(conf1) val fileName = pathParent + "/jsonObj" val path = new Path(fileName) val hdfsOutStream = fs.create(path) hdfsOutStream.write(jsonStr.getBytes("utf-8")) hdfsOutStream.flush() hdfsOutStream.close() // fs.close(); } def saveRecords(hiveContext: HiveContext, tableName: String, num: Int, filePath: String) : Unit = { hiveContext.sql(s"select * from $tableName limit $num").write.mode(SaveMode.Overwrite).format("json").save(filePath) } /** * 根據allCols, mathColArr, strColArr 三個數組,返回帶有全部統計信息(除去已經根據describe獲取到的)的dataframes。 * 返回的dataframe結果進行遍歷,填充各個屬性的值。 */ def getAllStatistics(hiveContext: HiveContext, tableName: String, allColArr: Array[String], strColArr: Array[String], mathColArr: Array[String], partNum: Int, colMin: java.util.HashMap[String, Double], colMax: java.util.HashMap[String, Double]) : JSONObject = { val jsonobj = new JSONObject() val sb = new StringBuffer() sb.append("select ") allColArr.map{col => sb.append(s"count(distinct(`$col`)) as unique_$col ," + s"sum(case when `$col` is null then 1 else 0 end) as missing_$col, ")} sb.append(s"sum(1) as totalrows from $tableName") val df = hiveContext.sql(sb.toString) val colUnique = new java.util.HashMap[String, Long]//惟一值 val colMissing = new java.util.HashMap[String, Long]//缺失值 var totalrows = 0L df.take(1).foreach(row => (totalrows = row.getAs[Long]("totalrows"), jsonobj.put("totalrows", totalrows) ,allColArr.foreach(col => (colUnique.put(col, row.getAs[Long]("unique_"+col)),colMissing.put(col, row.getAs[Long]("missing_"+col))) ) )) val dfArr = ArrayBuffer[DataFrame]() val strHistogramSql = new StringBuffer() strHistogramSql.append(s""" SELECT tta.colName, tta.value, tta.num FROM ( SELECT ta.colName, ta.value, ta.num, ROW_NUMBER() OVER (PARTITION BY ta.colName ORDER BY ta.num DESC) AS row FROM ( """) var vergin = 0 for(col <- strColArr){ if(vergin == 1){ strHistogramSql.append(" UNION ALL ") } vergin = 1 strHistogramSql.append(s""" SELECT 'StrHistogram_$col' AS colName, `$col` AS value, COUNT(1) AS num FROM $tableName GROUP BY `$col` """) } strHistogramSql.append(s""" ) ta ) tta WHERE tta.row <= $partNum """) //整個表中,可能不存在字符串型的列。此時,sql是不完整的,添加到df中會報錯。 if(strColArr != null && strColArr.size != 0 ){ val dfStrHistogram = hiveContext.sql(strHistogramSql.toString) dfArr.append(dfStrHistogram) } for(col <- mathColArr) { val df1 = hiveContext.sql(s"select 'Quartile_$col' as colName, ntil, bigint(max(`$col`)) as num from (select `$col`, ntile(4) OVER (order by `$col`)as ntil from $tableName) tt group by ntil ") log.info("col is :" + col + ", min is :" + colMin.get(col) + ", max is : " + colMax.get(col)) // when the column data contains null, the min and max may be null or be "Infinity". if (colMin == null || colMin.get(col) == null || colMax.get(col) == null || colMax.get(col) == "Infinity" || colMin.get(col) == "Infinity") { log.info("col is :" + col + ", min is :" + colMin.get(col) + ", max is : " + colMax.get(col)) } else { //need toString first, then toDouble。 or:ClassCastException val min = colMin.get(col).toString.toDouble val max = colMax.get(col).toString.toDouble val df2 = getHistogramMathDF(col, hiveContext, tableName, min, max, partNum) dfArr.append(df1) dfArr.append(df2) } } //可能存在沒有列可統計的狀況, e.g. 表中的列都爲double,但數據都是null. //dfArr.reduce 和會報錯:java.lang.UnsupportedOperationException: empty.reduceLeft //總行數爲0時,四分位,條形圖也天然獲取不到,且會出現NullPointerException。 if(dfArr.isEmpty || totalrows == 0L){ jsonobj.put("colUnique", colUnique) jsonobj.put("colMissing", colMissing) }else { val dfAll = dfArr.reduce(_.unionAll(_)) val allRows = dfAll.collect() val mathColMapQuartile = new java.util.HashMap[String, Array[java.util.HashMap[String, Long]]] //四分位 val mathColMapHistogram = new java.util.HashMap[String, Array[java.util.HashMap[String, Long]]] //條形圖 val strColMapHistogram = new java.util.HashMap[String, Array[java.util.HashMap[String, Long]]] //條形圖 val (mathColMapQuartile1, mathColMapHistogram1, strColMapHistogram1) = readRows(allRows) for (col <- strColArr) { strColMapHistogram.put(col, strColMapHistogram1.get(col).toArray[java.util.HashMap[String, Long]]) } for (col <- mathColArr) { mathColMapQuartile.put(col, mathColMapQuartile1.get(col).toArray[java.util.HashMap[String, Long]]) mathColMapHistogram.put(col, mathColMapHistogram1.get(col).toArray[java.util.HashMap[String, Long]]) } jsonobj.put("mathColMapQuartile", mathColMapQuartile) jsonobj.put("mathColMapHistogram", mathColMapHistogram) jsonobj.put("strColMapHistogram", strColMapHistogram) jsonobj.put("colUnique", colUnique) jsonobj.put("colMissing", colMissing) } jsonobj } def readRows(rows: Array[Row]) : (java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]] , java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]], java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]])={ val mathColMapQuartile = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]] //四分位 val mathColMapHistogram = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]]//條形圖 val strColMapHistogram = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]]//條形圖 rows.foreach( row => { val colName = row.getAs[String]("colName") if (colName.startsWith("StrHistogram")) { val value = row.getAs[String](1) val num = row.getAs[Long](2) val map = new java.util.HashMap[String, Long]() val col = colName.substring(colName.indexOf('_') + 1) map.put(value, num) val mapValue = strColMapHistogram.get(col) if (mapValue == null) { val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]() mapValueNew.append(map) strColMapHistogram.put(col, mapValueNew) } else { mapValue.append(map) strColMapHistogram.put(col, mapValue) } } else if (colName.toString.startsWith("Quartile")) { val value = row.get(1).toString val num = row.getAs[Long](2) val map = new java.util.HashMap[String, Long]() val col = colName.substring(colName.indexOf('_') + 1) map.put(value, num) val mapValue = mathColMapQuartile.get(col) if (mapValue == null) { val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]() mapValueNew.append(map) mathColMapQuartile.put(col, mapValueNew) } else { mapValue.append(map) mathColMapQuartile.put(col, mapValue) } } else if (colName.toString.startsWith("MathHistogram")) { val value =row.get(1).toString val num = row.getAs[Long](2) val map = new java.util.HashMap[String, Long]() val col = colName.substring(colName.indexOf('_') + 1) map.put(value, num) val mapValue = mathColMapHistogram.get(col) if (mapValue == null) { val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]() mapValueNew.append(map) mathColMapHistogram.put(col, mapValueNew) } else { mapValue.append(map) mathColMapHistogram.put(col, mapValue) } } }) (mathColMapQuartile, mathColMapHistogram, strColMapHistogram) } /** 數值型的列的條形分佈獲取方法*/ def getHistogramMathDF(col : String, hiveContext: HiveContext, tableName: String, min: Double, max: Double, partNum: Int) : DataFrame = { val len = (max - min) / partNum log.info(s"len is : $len") val sb = new StringBuffer() sb.append(s"select `$col`, (case ") val firstRight = min + len sb.append(s" when (`$col` >= $min and `$col` <= $firstRight) then 1 ") for (i <- 2 until (partNum + 1)) { val left = min + len * (i - 1) val right = min + len * i sb.append(s" when (`$col` > $left and `$col` <= $right) then $i ") } sb.append(s" else 0 end ) as partNum from $tableName") sb.insert(0, s"select 'MathHistogram_$col' as colName, partNum, count(1) as num from ( ") sb.append(") temptableScala group by partNum") log.info("getHistogram is: " + sb.toString) val df = hiveContext.sql(sb.toString) df } def getDesfromDF(dfdesc : DataFrame, mathColArr: Array[String]): (java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double])= { val allRows = dfdesc.collect() val colMin = new java.util.HashMap[String, Double]//最小值 val colMax = new java.util.HashMap[String, Double]//最大值 val colMean = new java.util.HashMap[String, Double]//平均值 val colStddev = new java.util.HashMap[String, Double]//標準差 val colMedian = new java.util.HashMap[String, Double]//中位值 allRows.foreach(row => { val mapKey = row.getAs[String]("summary") for(col <- mathColArr){ if("mean".equalsIgnoreCase(mapKey)){ colMean.put(col, row.getAs[Double](col)) }else if("stddev".equalsIgnoreCase(mapKey)){ colStddev.put(col, row.getAs[Double](col)) }else if("min".equalsIgnoreCase(mapKey)){ log.info("col is " + col +", min is : "+ row.getAs[Double](col)) colMin.put(col, row.getAs[Double](col)) }else if("max".equalsIgnoreCase(mapKey)){ log.info("col is " + col +", max is : "+ row.getAs[Double](col)) colMax.put(col, row.getAs[Double](col)) }else{ colMedian.put(col, row.getAs[Double](col)) } } }) (colMin, colMax, colMean, colStddev, colMedian) } }