import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.{Logging, SparkConf, SparkContext}
import org.apache.spark.sql.{DataFrame, Row, SaveMode, _}
import com.alibaba.fastjson.{JSON, JSONObject}
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
import scala.collection.mutable.ArrayBuffer
object DataFrameVisiualize extends Logging {
def runforstatistic(hiveContext: HiveContext, params: JSONObject) = {
val arr = params.getJSONArray("targetType")
var i = 0
while( i < arr.size()){
val obj = arr.getJSONObject(i)
if("dataset".equalsIgnoreCase(obj.getString("targetType"))){
val tableNameKey = obj.getString("targetName")
val tableName = params.getString(tableNameKey)
val user = params.getString("user")
run(hiveContext, tableName, user)
}
i = i+1
}
}
def run(hiveContext: HiveContext, tableName: String, user: String) = {
val pathParent = s"/user/$user/mlaas/tableStatistic/$tableName"
// val conf = new SparkConf().setAppName("DataFrameVisiualizeJob")
// val sc = new SparkContext(conf)
// val hiveContext = new HiveContext(sc)
// val sqlContext = new SQLContext(sc)
//0.獲取DB的schema信息
val schemadf = hiveContext.sql("desc " + tableName)
//schema信息落地
val filePathSchema = pathParent + "/schemajson"
schemadf.write.mode(SaveMode.Overwrite).format("json").save(filePathSchema)
//1.加載表到dataframe
val df = hiveContext.sql("select * from " + tableName)
//2.獲取dataframe的describe信息,默認爲獲取到的都爲數值型列
val dfdesc = df.describe()
// //3.描述信息落地
// val filePath = pathParent + "/describejson"
// des.write.mode(SaveMode.Overwrite).format("json").save(filePath)
// val dfdesc = sqlContext.read.format("json").load(filePath)
//4.列信息區分爲mathColArr 和 strColArr
val mathColArr = dfdesc.columns.filter(!_.equalsIgnoreCase("summary"))
val (colMin, colMax, colMean, colStddev, colMedian) = getDesfromDF(dfdesc, mathColArr)
val allColArr = df.columns
val strColArr = allColArr.filter(!_.equalsIgnoreCase("summary")).diff(mathColArr)
saveRecords(hiveContext, tableName, 100, pathParent + "/recordsjson")
val jsonobj = getAllStatistics(hiveContext, tableName, allColArr, strColArr, mathColArr, 10, colMin, colMax)
jsonobj.put("colMin", colMin)
jsonobj.put("colMax", colMax)
jsonobj.put("colMean", colMean)
jsonobj.put("colStddev", colStddev)
jsonobj.put("colMedian", colMedian)
val jsonStr = jsonobj.toString
val conf1 = new Configuration()
val fs = FileSystem.get(conf1)
val fileName = pathParent + "/jsonObj"
val path = new Path(fileName)
val hdfsOutStream = fs.create(path)
hdfsOutStream.writeBytes(jsonStr)
hdfsOutStream.flush()
hdfsOutStream.close()
// fs.close();
}
def saveRecords(hiveContext: HiveContext, tableName: String, num: Int, filePath: String) : Unit = {
hiveContext.sql(s"select * from $tableName limit $num").write.mode(SaveMode.Overwrite).format("json").save(filePath)
}
/**
* 根據allCols, mathColArr, strColArr 三個數組,返回帶有全部統計信息(除去已經根據describe獲取到的)的dataframes。
* 返回的dataframe結果進行遍歷,填充各個屬性的值。
*/
def getAllStatistics(hiveContext: HiveContext, tableName: String, allColArr: Array[String], strColArr: Array[String], mathColArr: Array[String], partNum: Int, colMin: java.util.HashMap[String, Double], colMax: java.util.HashMap[String, Double]) :
JSONObject = {
val jsonobj = new JSONObject()
val sb = new StringBuffer()
sb.append("select ")
for(col <- allColArr){
sb.append(s"count(distinct($col)) as unique_$col , sum(case when $col is null then 1 else 0 end) as missing_$col, ")
}
sb.append(s"sum(1) as totalrows from $tableName")
val df = hiveContext.sql(sb.toString)
val colUnique = new java.util.HashMap[String, Long]//惟一值
val colMissing = new java.util.HashMap[String, Long]//缺失值
df.take(1).foreach(row => (jsonobj.put("totalrows", row.getAs[Long]("totalrows")),allColArr.foreach(col => (colUnique.put(col, row.getAs[Long]("unique_"+col)),colMissing.put(col, row.getAs[Long]("missing_"+col))) ) ))
val dfArr = ArrayBuffer[DataFrame]()
val strHistogramSql = new StringBuffer()
strHistogramSql.append(s"""
SELECT tta.colName, tta.value, tta.num
FROM (
SELECT ta.colName, ta.value, ta.num, ROW_NUMBER() OVER (PARTITION BY ta.colName ORDER BY ta.num DESC) AS row
FROM (
""")
var vergin = 0
for(col <- strColArr){
if(vergin == 1){
strHistogramSql.append(" UNION ALL ")
}
vergin = 1
strHistogramSql.append(s"""
SELECT 'StrHistogram_$col' AS colName, $col AS value, COUNT(1) AS num
FROM $tableName
GROUP BY $col """)
}
strHistogramSql.append(s"""
) ta
) tta
WHERE tta.row <= $partNum
""")
val dfStrHistogram = hiveContext.sql(strHistogramSql.toString)
dfArr.append(dfStrHistogram)
for(col <- mathColArr){
val df1 = hiveContext.sql(s"select 'Quartile_$col' as colName, ntil, max($col) as num from (select $col, ntile(4) OVER (order by $col)as ntil from $tableName) tt group by ntil ")
log.info("col is :" + col + ", min is :" + colMin.get(col) + ", max is : " + colMax.get(col))
//need toString first, then toDouble。 or:ClassCastException
val min = colMin.get(col).toString.toDouble
val max = colMax.get(col).toString.toDouble
val df2 = getHistogramMathDF(col, hiveContext, tableName, min, max, partNum)
dfArr.append(df1)
dfArr.append(df2)
}
val dfAll = dfArr.reduce(_.unionAll(_))
val allRows = dfAll.collect()
val mathColMapQuartile = new java.util.HashMap[String, Array[java.util.HashMap[String,Long]]] //四分位
val mathColMapHistogram = new java.util.HashMap[String, Array[java.util.HashMap[String,Long]]]//條形圖
val strColMapHistogram = new java.util.HashMap[String, Array[java.util.HashMap[String,Long]]]//條形圖
val (mathColMapQuartile1, mathColMapHistogram1, strColMapHistogram1) = readRows(allRows)
for(col <- strColArr){
strColMapHistogram.put(col,strColMapHistogram1.get(col).toArray[java.util.HashMap[String,Long]])
}
for(col <- mathColArr){
mathColMapQuartile.put(col,mathColMapQuartile1.get(col).toArray[java.util.HashMap[String,Long]])
mathColMapHistogram.put(col,mathColMapHistogram1.get(col).toArray[java.util.HashMap[String,Long]])
}
jsonobj.put("mathColMapQuartile", mathColMapQuartile)
jsonobj.put("mathColMapHistogram", mathColMapHistogram)
jsonobj.put("strColMapHistogram", strColMapHistogram)
jsonobj.put("colUnique", colUnique)
jsonobj.put("colMissing", colMissing)
jsonobj
}
def readRows(rows: Array[Row]) : (java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]] , java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]], java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]])={
val mathColMapQuartile = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]] //四分位
val mathColMapHistogram = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]]//條形圖
val strColMapHistogram = new java.util.HashMap[String, ArrayBuffer[java.util.HashMap[String,Long]]]//條形圖
rows.foreach( row => {
val colName = row.getAs[String]("colName")
if (colName.startsWith("StrHistogram")) {
val value = row.getAs[String](1)
val num = row.getAs[Long](2)
val map = new java.util.HashMap[String, Long]()
val col = colName.substring(colName.indexOf('_') + 1)
map.put(value, num)
val mapValue = strColMapHistogram.get(col)
if (mapValue == null) {
val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]()
mapValueNew.append(map)
strColMapHistogram.put(col, mapValueNew)
} else {
mapValue.append(map)
strColMapHistogram.put(col, mapValue)
}
} else if (colName.toString.startsWith("Quartile")) {
val value = row.getAs[String](1)
val num = row.getAs[Long](2)
val map = new java.util.HashMap[String, Long]()
val col = colName.substring(colName.indexOf('_') + 1)
map.put(value, num)
val mapValue = mathColMapQuartile.get(col)
if (mapValue == null) {
val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]()
mapValueNew.append(map)
mathColMapQuartile.put(col, mapValueNew)
} else {
mapValue.append(map)
mathColMapQuartile.put(col, mapValue)
}
} else if (colName.toString.startsWith("MathHistogram")) {
val value = row.getAs[String](1)
val num = row.getAs[Long](2)
val map = new java.util.HashMap[String, Long]()
val col = colName.substring(colName.indexOf('_') + 1)
map.put(value, num)
val mapValue = mathColMapHistogram.get(col)
if (mapValue == null) {
val mapValueNew = ArrayBuffer[java.util.HashMap[String, Long]]()
mapValueNew.append(map)
mathColMapHistogram.put(col, mapValueNew)
} else {
mapValue.append(map)
mathColMapHistogram.put(col, mapValue)
}
}
})
(mathColMapQuartile, mathColMapHistogram, strColMapHistogram)
}
/** 數值型的列的條形分佈獲取方法*/
def getHistogramMathDF(col : String, hiveContext: HiveContext, tableName: String, min: Double, max: Double, partNum: Int) : DataFrame = {
val len = (max - min) / partNum
log.info(s"len is : $len")
val sb = new StringBuffer()
sb.append(s"select $col, (case ")
val firstRight = min + len
sb.append(s" when ($col >= $min and $col <= $firstRight) then 1 ")
for (i <- 2 until (partNum + 1)) {
val left = min + len * (i - 1)
val right = min + len * i
sb.append(s" when ($col > $left and $col <= $right) then $i ")
}
sb.append(s" else 0 end ) as partNum from $tableName")
sb.insert(0, s"select 'MathHistogram_$col' as colName, partNum, count(1) as num from ( ")
sb.append(") temptableScala group by partNum")
log.info("getHistogram is: " + sb.toString)
val df = hiveContext.sql(sb.toString)
df
}
def getDesfromDF(dfdesc : DataFrame, mathColArr: Array[String]):
(java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double], java.util.HashMap[String, Double])= {
val allRows = dfdesc.collect()
val colMin = new java.util.HashMap[String, Double]//最小值
val colMax = new java.util.HashMap[String, Double]//最大值
val colMean = new java.util.HashMap[String, Double]//平均值
val colStddev = new java.util.HashMap[String, Double]//標準差
val colMedian = new java.util.HashMap[String, Double]//中位值
allRows.foreach(row => {
val mapKey = row.getAs[String]("summary")
for(col <- mathColArr){
if("mean".equalsIgnoreCase(mapKey)){
colMean.put(col, row.getAs[Double](col))
}else if("stddev".equalsIgnoreCase(mapKey)){
colStddev.put(col, row.getAs[Double](col))
}else if("min".equalsIgnoreCase(mapKey)){
log.info("col is " + col +", min is : "+ row.getAs[Double](col))
colMin.put(col, row.getAs[Double](col))
}else if("max".equalsIgnoreCase(mapKey)){
log.info("col is " + col +", max is : "+ row.getAs[Double](col))
colMax.put(col, row.getAs[Double](col))
}else{
colMedian.put(col, row.getAs[Double](col))
}
}
})
(colMin, colMax, colMean, colStddev, colMedian)
}
}