輸入第1行,包含3個整數N,Q。Q表明詢問組數。
第2行是字符串S。
接下來Q行,每行兩個整數i和j。(1≤i≤j)。c++
輸出共Q行,每行一個數表示每組詢問的答案。若是不存在第i個子串或第j個子串,則輸出-1。ui
5 3
ababa
3 5
5 9
8 10spa
18
16
-1code
樣例解釋blog
第1組詢問:兩個子串是「aba」,「ababa」。f = 32 + 32 = 18。ip
第2組詢問:兩個子串是「ababa」,「baba」。f = 02 + 42 = 16。字符串
第3組詢問:不存在第10個子串。輸出-1。get
數據範圍input
N≤100000,Q≤100000,字符串只由小寫字母'a'~'z'組成string
直接正串反串創建SA而後求出lcp就能夠了。。。
#include<bits/stdc++.h> using namespace std; typedef pair<int, int> pi; typedef long long ll; const int N = 1e5 + 10; const int LOG = 20; struct Suffix_Array { int s[N], n, m; int c[N], x[N], y[N]; int height[N], sa[N], rank[N]; int st[N][LOG], Log[N]; ll sum[N]; void init(int len, char *c) { n = len, m = 0; for (int i = 1; i <= len; i++) { s[i] = c[i]; m = max(m, s[i]); } } void radix_sort() { for (int i = 1; i <= m; i++) c[i] = 0; for (int i = 1; i <= n; i++) c[x[y[i]]]++; for (int i = 1; i <= m; i++) c[i] += c[i - 1]; for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i]; } void buildsa() { for (int i = 1; i <= n; i++) x[i] = s[i], y[i] = i; radix_sort(); int now; for (int k = 1; k <= n; k <<= 1) { now = 0; for (int i = n - k + 1; i <= n; i++) y[++now] = i; for (int i = 1; i <= n; i++) if (sa[i] > k) y[++now] = sa[i] - k; radix_sort(); y[sa[1]] = now = 1; for (int i = 2; i <= n; i++) y[sa[i]] = (x[sa[i]] == x[sa[i - 1]] && x[sa[i] + k] == x[sa[i - 1] + k]) ? now : ++now; swap(x, y); if (now == n) break; m = now; } } void buildrank() { for (int i = 1; i <= n; i++) rank[sa[i]] = i; } void buildsum() { for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + n - sa[i] + 1 - height[i]; } void buildheight() { for (int i = 1; i <= n; i++) if (rank[i] != 1) { int k = max(height[rank[i - 1]] - 1, 0); for (; s[i + k] == s[sa[rank[i] - 1] + k]; k++); height[rank[i]] = k; } } void buildst() { Log[1] = 0; for (int i = 2; i < N; i++) Log[i] = Log[i >> 1] + 1; for (int i = 1; i <= n; i++) st[i][0] = height[i]; for (int j = 1; j < LOG; j++) { for (int i = 1; i + (1 << (j - 1)) <= n; i++) { st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]); } } } int queryst(int l, int r) { if (l == r) return n - sa[l] + 1; if (l > r) swap(l, r); ++l; int k = Log[r - l + 1]; return min(st[l][k], st[r - (1 << k) + 1][k]); } int querylcp(int la, int ra, int lb, int rb) { return min(min(ra - la + 1, rb - lb + 1), queryst(rank[la], rank[lb])); } bool cmpsubstring(int la, int ra, int lb, int rb) { int lcp = querylcp(la, ra, lb, rb); if (ra - la + 1 == lcp) return 1; if (rb - lb + 1 == lcp) return 0; return s[la + lcp] < s[lb + lcp]; } pi findkth(ll k) { int pos = lower_bound(sum + 1, sum + n + 1, k) - sum; return pi(sa[pos], sa[pos] + height[pos] + k - sum[pos - 1] - 1); } ll getrank(int l, int r) { int pos = rank[l], len = r - l + 1; for (int i = LOG - 1; i >= 0; i--) { if (pos > (1 << i) && st[pos - (1 << i) + 1][i] >= len) { pos -= (1 << i); } } return sum[pos - 1] + len - height[pos]; } void build(int len, char *c) { init(len, c); buildsa(); buildrank(); buildheight(); buildsum(); buildst(); } } Sa, revSa; char s[N], revs[N]; int len, q; int main() { scanf("%d %d", &len, &q); scanf("%s", s + 1); for (int i = 1; i <= len; i++) revs[i] = s[len - i + 1]; Sa.build(len, s); revSa.build(len, revs); while (q--) { ll x, y; scanf("%lld %lld", &x, &y); if (Sa.sum[len] < max(x, y)) { printf("-1\n"); continue; } pi curx = Sa.findkth(x), cury = Sa.findkth(y); int a = Sa.querylcp(curx.first, curx.second, cury.first, cury.second); int b = revSa.querylcp(len - curx.second + 1, len - curx.first + 1, len - cury.second + 1, len - cury.first + 1); printf("%lld\n", 1ll * a * a + 1ll * b * b); } return 0; }