在你應用程序的UI界面加載一張圖片是一件很簡單的事情,可是當你須要在界面上加載一大堆圖片的時候,狀況就變得複雜起來。在不少狀況下,(好比使用ListView, GridView 或者 ViewPager 這樣的組件),屏幕上顯示的圖片能夠經過滑動屏幕等事件不斷地增長,最終致使OOM。java
爲了保證內存的使用始終維持在一個合理的範圍,一般會把被移除屏幕的圖片進行回收處理。此時垃圾回收器也會認爲你再也不持有這些圖片的引用,從而對這些圖片進行GC操做。用這種思路來解決問題是很是好的,但是爲了能讓程序快速運行,在界面上迅速地加載圖片,你又必需要考慮到某些圖片被回收以後,用戶又將它從新滑入屏幕這種狀況。這時從新去加載一遍剛剛加載過的圖片無疑是性能的瓶頸,你須要想辦法去避免這個狀況的發生。android
這個時候,使用內存緩存技術能夠很好的解決這個問題,它可讓組件快速地從新加載和處理圖片。下面咱們就來看一看如何使用內存緩存技術來對圖片進行緩存,從而讓你的應用程序在加載不少圖片的時候能夠提升響應速度和流暢性。算法
內存緩存技術對那些大量佔用應用程序寶貴內存的圖片提供了快速訪問的方法。其中最核心的類是LruCache (此類在android-support-v4的包中提供) 。這個類很是適合用來緩存圖片,它的主要算法原理是把最近使用的對象用強引用存儲在 LinkedHashMap 中,而且把最近最少使用的對象在緩存值達到預設定值以前從內存中移除。緩存
在過去,咱們常常會使用一種很是流行的內存緩存技術的實現,即軟引用或弱引用 (SoftReference or WeakReference)。可是如今已經再也不推薦使用這種方式了,由於從 Android 2.3 (API Level 9)開始,垃圾回收器會更傾向於回收持有軟引用或弱引用的對象,這讓軟引用和弱引用變得再也不可靠。另外,Android 3.0 (API Level 11)中,圖片的數據會存儲在本地的內存當中,於是沒法用一種可預見的方式將其釋放,這就有潛在的風險形成應用程序的內存溢出並崩潰。ide
爲了可以選擇一個合適的緩存大小給LruCache, 有如下多個因素應該放入考慮範圍內,例如:函數
你的設備能夠爲每一個應用程序分配多大的內存?性能
設備屏幕上一次最多能顯示多少張圖片?有多少圖片須要進行預加載,由於有可能很快也會顯示在屏幕上?spa
你的設備的屏幕大小和分辨率分別是多少?一個超高分辨率的設備(例如 Galaxy Nexus) 比起一個較低分辨率的設備(例如 Nexus S),在持有相同數量圖片的時候,須要更大的緩存空間。線程
圖片的尺寸和大小,還有每張圖片會佔據多少內存空間。code
圖片被訪問的頻率有多高?會不會有一些圖片的訪問頻率比其它圖片要高?若是有的話,你也許應該讓一些圖片常駐在內存當中,或者使用多個LruCache 對象來區分不一樣組的圖片。
你能維持好數量和質量之間的平衡嗎?有些時候,存儲多個低像素的圖片,而在後臺去開線程加載高像素的圖片會更加的有效。
並無一個指定的緩存大小能夠知足全部的應用程序,這是由你決定的。你應該去分析程序內存的使用狀況,而後制定出一個合適的解決方案。一個過小的緩存空間,有可能形成圖片頻繁地被釋放和從新加載,這並無好處。而一個太大的緩存空間,則有可能仍是會引發 java.lang.OutOfMemory 的異常。
下面是一個使用 LruCache 來緩存圖片的例子:
[java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
private LruCache<String, Bitmap> mMemoryCache;
@Override
protected void onCreate(Bundle savedInstanceState) {
// 獲取到可用內存的最大值,使用內存超出這個值會引發OutOfMemory異常。
// LruCache經過構造函數傳入緩存值,以KB爲單位。
int maxMemory = ( int ) (Runtime.getRuntime().maxMemory() / 1024 );
// 使用最大可用內存值的1/8做爲緩存的大小。
int cacheSize = maxMemory / 8 ;
mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
@Override
protected int sizeOf(String key, Bitmap bitmap) {
// 重寫此方法來衡量每張圖片的大小,默認返回圖片數量。
return bitmap.getByteCount() / 1024 ;
}
};
}
public void addBitmapToMemoryCache(String key, Bitmap bitmap) {
if (getBitmapFromMemCache(key) == null ) {
mMemoryCache.put(key, bitmap);
}
}
public Bitmap getBitmapFromMemCache(String key) {
return mMemoryCache.get(key);
}
|
在這個例子當中,使用了系統分配給應用程序的八分之一內存來做爲緩存大小。在中高配置的手機當中,這大概會有4兆(32/8)的緩存空間。一個全屏幕的 GridView 使用4張 800x480分辨率的圖片來填充,則大概會佔用1.5兆的空間(800*480*4)。所以,這個緩存大小能夠存儲2.5頁的圖片。
當向 ImageView 中加載一張圖片時,首先會在 LruCache 的緩存中進行檢查。若是找到了相應的鍵值,則會馬上更新ImageView ,不然開啓一個後臺線程來加載這張圖片。
[java]
1
2
3
4
5
6
7
8
9
10
11
|
public void loadBitmap( int resId, ImageView imageView) {
final String imageKey = String.valueOf(resId);
final Bitmap bitmap = getBitmapFromMemCache(imageKey);
if (bitmap != null ) {
imageView.setImageBitmap(bitmap);
} else {
imageView.setImageResource(R.drawable.image_placeholder);
BitmapWorkerTask task = new BitmapWorkerTask(imageView);
task.execute(resId);
}
}
|
BitmapWorkerTask 還要把新加載的圖片的鍵值對放到緩存中。
[java]
1
2
3
4
5
6
7
8
9
10
|
class BitmapWorkerTask extends AsyncTask<Integer, Void, Bitmap> {
// 在後臺加載圖片。
@Override
protected Bitmap doInBackground(Integer... params) {
final Bitmap bitmap = decodeSampledBitmapFromResource(
getResources(), params[ 0 ], 100 , 100 );
addBitmapToMemoryCache(String.valueOf(params[ 0 ]), bitmap);
return bitmap;
}
}
|