http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222
求\([a,b]\)中的個數轉化爲求\([1,b]\)中的個數減去\([1,a)\)中的個數。
\[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\left[\frac{ij}{(i,j)}\leq n\right]\\ =&\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{j=1}^{\left\lfloor\frac nd\right\rfloor}[(i,j)=1][ijd\leq n]\\ =&\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{j=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{d'|(i,j)}\mu(d')[ijd\leq n]\\ =&\sum_{d=1}^n\sum_{d'=1}^{\left\lfloor\frac nd\right\rfloor}\mu(d')\sum_{i=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\left[ijdd'^2\leq n\right]\\ =&\sum_{d'=1}^{\left\lfloor\sqrt n\right\rfloor}\mu(d')\sum_{d=1}^{\left\lfloor\frac n{d'}\right\rfloor}\sum_{i=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\left[ijd\leq\left\lfloor\frac n{d'^2}\right\rfloor\right]\\ \end{aligned} \]
枚舉\(\left\lfloor\sqrt n\right\rfloor\)個\(d'\),對於每一個\(d'\),先假定\(d\leq i\leq j\),枚舉\(\left\lfloor\left(\frac n{d'}\right)^{\frac 13}\right\rfloor\)個\(d\),\(i\)再從\(d\)枚舉到\(\left\lfloor\left(\frac n{dd'}\right)^{\frac 12}\right\rfloor\),最後計算\(j\)的個數,乘上一個排列數便可。
\(f(x)\)表示對每一個\(d'\)計算的複雜度。
時間複雜度爲\(O\left(\sum\limits_{d'=1}^{\left\lfloor\sqrt n\right\rfloor}f(d')\right)\)。
\[ \begin{aligned} f(x)=&\int_{0}^{\left(\frac n{x^2}\right)^{\frac 13}}\left(\left(\frac n{x^2i}\right)^{\frac 12}-i\right)di\\ =&\left(\frac n{x^2}\right)^{\frac 12}\int_0^{\left(\frac n{x^2}\right)^{\frac 13}}i^{-\frac 12}di-\int_0^{\left(\frac n{x^2}\right)^{\frac 13}}idi\\ =&\left(\frac n{x^2}\right)^{\frac 12}\left(2\left({\left(\frac n{x^2}\right)^{\frac 13}}\right)^{\frac 12}-2\right)-\left(\frac 12\left({\left(\frac n{x^2}\right)^{\frac 13}}\right)^2\right)\\ =&\frac 34\left(\frac n{x^2}\right)^{\frac 23}-2\left(\frac n{x^2}\right)^{\frac 12} \end{aligned} \]
\[ \begin{aligned} &O\left(\sum_{d'=1}^{\left\lfloor\sqrt n\right\rfloor}f(d')\right)\\ =&O\left(\int_0^{\sqrt n}\left(\frac n{x^2}\right)^{\frac 23}dx\right)\\ =&O\left(n^{\frac 23}\int_0^{\sqrt n}x^{-\frac 43}dx\right)\\ =&O\left(n^{\frac 23}\left(\left(-3\sqrt{n}^{-\frac 13}\right)-\left(-3\times0^{-\frac 13}\right)\right)\right)\\ =&O\left(3n^{\frac 23}-3n^{\frac 12}\right)\\ =&O\left(n^{\frac 23}\right) \end{aligned} \]
因此總時間複雜度爲\(O\left(n^{\frac 23}\right)\),好神奇啊qwqhtml
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; const int sq = 316228; bool notp[sq + 1]; int mu[sq + 1], prime[sq], num = 0; void Euler_shai() { mu[1] = 1; for (int i = 2; i <= sq; ++i) { if (!notp[i]) prime[++num] = i, mu[i] = -1; for (int j = 1; j <= num && prime[j] * i <= sq; ++j) { notp[prime[j] * i] = true; if (i % prime[j] == 0) break; mu[prime[j] * i] = -mu[i]; } } } ll a, b; ll cal(ll n) { ll ret = 0; for (int d = 1; 1ll * d * d <= n; ++d) if (mu[d]) { ll up = n / d / d, r = 0; for (int i = 1; 1ll * i * i * i <= up; ++i) { ll up2 = up / i; r += (up2 / i - i) * 3 + 1; for (int j = i + 1; 1ll * j * j <= up2; ++j) r += (up2 / j - j) * 6 + 3; } mu[d] > 0 ? ret += r : ret -= r; } return (ret + n) >> 1; } int main() { scanf("%lld%lld", &a, &b); Euler_shai(); printf("%lld\n", cal(b) - cal(a - 1)); return 0; }