JavaShuo
欄目
標籤
《Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms》
時間 2021-01-11
標籤
深度學習
機器學習
計算機視覺
自然語言處理
欄目
Microsoft Office
简体版
原文
原文鏈接
出處: ACL2018 1. 貢獻 本文提出在詞向量上進行簡單的池化操作在文本分類/匹配任務上就可以得到跟CNN/RNN相當的效果。 2. 方案 1) SWEM-aver:整個句子的信息 ) 2)SWEM-max:突出特徵 ) 3)拼接SWEM-aver和SWEM-max 4 SWEM-hier(層次化) 最大和平均池化沒有考慮詞序,這裏引入層次化pooling。先作固定窗口的平均pooling,
>>阅读原文<<
相關文章
1.
論文筆記Baseline Needs More Love:On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
2.
baseline needs more love 簡單網絡vs複雜網絡(1)——baseline
3.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
5.
Faster, more memory efficient and more ordered dictionaries on PyPy
6.
Missing associated label more...
7.
Deep Learning Models and Code for Pose Estimation
8.
c3p0 - JDBC3 Connection and Statement Pooling
9.
DEEP DOUBLE DESCENT: WHERE BIGGER MODELS AND MORE DATA HURT
10.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
更多相關文章...
•
XSL-FO simple-page-master 對象
-
XSL-FO 教程
•
W3C RDF and OWL 活動
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
RxJava操作符(一)Creating Observables
相關標籤/搜索
needs
pooling
baseline
mechanisms
associated
love
models
simple
models&orm
2.models
快樂工作
Microsoft Office
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
FM理論與實踐
2.
Google開發者大會,你想知道的都在這裏
3.
IRIG-B碼對時理解
4.
乾貨:嵌入式系統設計開發大全!(萬字總結)
5.
從域名到網站—虛機篇
6.
php學習5
7.
關於ANR線程阻塞那些坑
8.
android studio databinding和include使用控件id獲取報錯 不影響項目正常運行
9.
我女朋友都會的安卓逆向(四 動態調試smali)
10.
io存取速度
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記Baseline Needs More Love:On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
2.
baseline needs more love 簡單網絡vs複雜網絡(1)——baseline
3.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
5.
Faster, more memory efficient and more ordered dictionaries on PyPy
6.
Missing associated label more...
7.
Deep Learning Models and Code for Pose Estimation
8.
c3p0 - JDBC3 Connection and Statement Pooling
9.
DEEP DOUBLE DESCENT: WHERE BIGGER MODELS AND MORE DATA HURT
10.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
>>更多相關文章<<