你們都知道斐波那契數列,如今要求輸入一個整數n,請你輸出斐波那契數列的第n項(從0開始,第0項爲0)。 n<=39ide
遞推公式f(n)=f(n)=
當n=0=0,當n=0 當
n=1=1,當n=1
其餘=f(n−1)+f(n−2)看到這你們很容易想起遞歸,課堂上老師講遞歸的時候的經典例子。可是當n很大的時候,就會出現堆棧溢出。堆棧溢出的主要緣由是,遞歸重複的計算太多,不少計算是能夠避免的,用循環計算結果,顯根據前兩項算出第三項,之後每次都是這樣計算。測試
遞歸實現spa
public static int Fibonacci(int n) { if (n <= 1) return n; return Fibonacci(n - 1) + Fibonacci(n - 2); }
循環實現code
public static int Fibonacci2(int n) { if (n <= 1) return n; int first = 0; int second = 1; int result = 0; for (int i = 2; i <= n; i++) { result = first + second; first = second; second = result; } return result; }
斐波那契數列求和blog
public static int FibonacciSum(int n) { if (n <= 1) return n; int first = 0; int second = 1; int temp = 0; int result = first + second; for (int i = 2; i <= n; i++) { temp = first + second; first = second; second = temp; result = result + temp; } return result; }
斐波那契數列求和,利用公式計算遞歸
public static int FibonacciSum2(int n) { if (n <= 1) return n; int first = 0; int second = 1; int temp = 0; for (int i = 2; i <= n; i++) { temp = first + second; first = second; second = temp; } int result = 2 * second + first - 1; //Sn = 2an + an - 1 - 1 return result; }
[Fact] public void Test0() { Assert.Equal(0, Coding007.Fibonacci(0)); Assert.Equal(0, Coding007.Fibonacci2(0)); Assert.Equal(0, Coding007.FibonacciSum(0)); Assert.Equal(0, Coding007.FibonacciSum2(0)); } [Fact] public void Test1() { Assert.Equal(1, Coding007.Fibonacci(1)); Assert.Equal(1, Coding007.Fibonacci2(1)); Assert.Equal(1, Coding007.FibonacciSum(1)); Assert.Equal(1, Coding007.FibonacciSum2(1)); } [Fact] public void Test2() { Assert.Equal(1, Coding007.Fibonacci(2)); Assert.Equal(1, Coding007.Fibonacci2(2)); Assert.Equal(2, Coding007.FibonacciSum(2)); Assert.Equal(2, Coding007.FibonacciSum2(2)); } [Fact] public void Test3() { Assert.Equal(2, Coding007.Fibonacci(3)); Assert.Equal(2, Coding007.Fibonacci2(3)); Assert.Equal(4, Coding007.FibonacciSum(3)); Assert.Equal(4, Coding007.FibonacciSum2(3)); } [Fact] public void Test4() { Assert.Equal(3, Coding007.Fibonacci(4)); Assert.Equal(3, Coding007.Fibonacci2(4)); Assert.Equal(7, Coding007.FibonacciSum(4)); Assert.Equal(7, Coding007.FibonacciSum2(4)); } [Fact] public void Test5() { Assert.Equal(5, Coding007.Fibonacci(5)); Assert.Equal(5, Coding007.Fibonacci2(5)); Assert.Equal(12, Coding007.FibonacciSum(5)); Assert.Equal(12, Coding007.FibonacciSum2(5)); } [Fact] public void Test6() { Assert.Equal(8, Coding007.Fibonacci(6)); Assert.Equal(8, Coding007.Fibonacci2(6)); Assert.Equal(20, Coding007.FibonacciSum(6)); Assert.Equal(20, Coding007.FibonacciSum2(6)); }
1. 熟悉遞歸
2. 熟悉斐波那契數列
3. 斐波那契數列求和
4. 知道有公式的就用公式,不要本身去循環就算,就像1+2+3+......,用高斯定理直接算結果,不要再循環了ci