Show that DES decryption is, in fact, the inverse of DES encryption.加密
DES
的加密過程總結以下:
spa
1.首先執行的是\(IP\), \(IP(IP^{-1}(RE_{16}LE_{16}))=RE_{16} LE_{16}\)
2.接下來是肯定\(R_{16}L_{16}\)可否通過16 rounds獲得\(L_{0}R_{0}\)code
\(L_{n}=R_{n-1}\)blog
\(R_{n}=L_{n-1}\oplus f(R_{n-1},K_{n})\)io
令\(LD_{i}\) \(RD{i}\) 表明解密過程的各狀態,\(LE_{i}\) \(RE{i}\) 表明加密過程各狀態class
已知\(LD_{0}=RE_{16}\), \(RD_{0}=LE_{16}\)im
假設\(RD_{i-1}=LE_{16-i+1}\) , \(LD_{i-1}=RE_{16-i+1}\)總結
\(LD_{i}=RD_{i-1}=LE_{16-i+1}=RE_{16-i}\)db
$RD_{i}=LD_{i-1}\oplus f(RD_{i-1}, K16-i+1) $img
\(=RE_{16-i+1}\oplus f(RE_{16-i}, K_{16-i+1})=[LE_{16-i}\oplus f(RE_{16-i},K_{16-i+1})]\oplus f(RE_{16-i},K_{16-i+1})=LE_{16-i}\)
則 \(LD_{i}=RE_{16-i}\) , \(RD_{i}=LE_{16-i}\)
所以 \(LD_{16}=RE_{0}\), \(RD_{16}=LE_{0}\)
3.交換後獲得 \(LE_{0}RE_{0}\)
4.執行\(IP^{-1}\), 恢復爲原文
可知 DES
的解密爲加密的逆過程。