本篇主要介紹常見的6種搜索方式、聚合分析語法,基本是上機實戰,能夠和關係型數據庫做對比,若是以前瞭解關係型數據庫,那本篇只須要了解搜索和聚合的語法規則就能夠了。java
以上篇創建的music索引爲例,咱們先看看搜索結果的屬性都有哪些mysql
{ "took": 1, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 1, "hits": [ { "_index": "music", "_type": "children", "_id": "1", "_score": 1, "_source": { "name": "gymbo", "content": "I hava a friend who loves smile, gymbo is his name", "length": "75" } } ] } }
主要的參數說明以下:sql
搜索全部數據數據庫
GET /music/children/_search
json
帶條件搜索api
GET /music/children/_search?q=name:gymbo&sort=length:asc
數組
此搜索語法的特色是全部的條件、排序所有用http請求的query string來附帶的。這種語法通常是演示或curl命令行簡單查詢時使用,不適用構建複雜的查詢條件,生產已經不多用了。網絡
DSL:Domain Specified Language特定領域語言app
http request body:請求體格式,body用json構建語法,能夠構建各類複雜的語法。curl
查詢全部數據
GET /music/children/_search { "query":{ "match_all": {} } }
帶條件+排序:
GET /music/children/_search { "query":{ "match": { "name": "gymbo" } }, "sort":[{"length":"desc"}] }
分頁查詢,size從0開始,下面的命令取第10條到第19條數據
GET /music/children/_search { "query": { "match_all":{} }, "from": 10, "size": 10 }
指定要查詢出來的屬性
GET /music/children/_search { "query": { "match_all" : {} }, "_source": ["name","content"] }
帶多個條件過濾:歌曲名稱是gymbo,而且時長在65到80秒之間的
GET /music/children/_search { "query":{ "bool":{ "must": [ {"match": { "name": "gymbo" }} ], "filter": {"range": { "length": { "gte": 65, "lte": 80 } }} } } }
GET /music/children/_search { "query":{ "match": { "content":"friend smile" } } }
搜索的結果是按相關度分數來排序的,搜索條件中的content field,在新增document時已經創建倒排索引,而後按匹配度最高的來排序,全文索引的原理。
GET /music/children/_search { "query":{ "match_phrase": { "content":"friend smile" } } }
全文檢索match會拆詞,大小寫不敏感,而後去倒排索引裏去匹配,phrase search不分詞,大小寫敏感,要求搜索串徹底同樣才匹配。
GET /music/children/_search { "query":{ "match_phrase":{ "content":"friend smile" } }, "highlight": { "fields": { "content":{} } } }
匹配的關鍵詞會高亮顯示,高亮的內容用標籤達到標記效果。
聚合分析相似於關係型數據的分組統計,而且用的語法名稱不少都與mysql相似,在這裏,能看到不少熟悉的方法。
需求:統計每種語言下的歌曲數量。
size爲0表示不顯示符合條件的document記錄,只顯示統計信息,不寫的話默認值是10
GET /music/children/_search { "size": 0, "aggs": { "group_by_lang": { "terms": { "field": "language" } } } }
響應結果:
{ "took": 3, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 0, "hits": [] }, "aggregations": { "group_by_lang": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "english", "doc_count": 1 } ] } } }
若是聚合查詢時出現以下錯誤提示:
"root_cause": [ { "type": "illegal_argument_exception", "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [language] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead." } ]
須要將用於分組的字段的fielddata屬性設置爲true
PUT /music/_mapping/children { "properties": { "language": { "type": "text", "fielddata": true } } }
需求:對歌詞中出現"friend"的歌曲,計算每一個語種下的歌曲數量
GET /music/children/_search { "size": 0, "query": { "match": { "content": "friend" } }, "aggs": { "all_languages": { "terms": { "field": "language" } } } }
需求:計算每一個語種下的歌曲,平均時長是多少
GET /music/children/_search { "size": 0, "aggs": { "group_by_languages": { "terms": { "field": "language" }, "aggs": { "avg_length": { "avg": { "field": "length" } } } } } }
需求:計算每一個語種下的歌曲,平均時長是多少,並按平均時長降序排序
GET /music/children/_search { "size": 0, "aggs": { "group_by_languages": { "terms": { "field": "language", "order": { "avg_length": "desc" } }, "aggs": { "avg_length": { "avg": { "field": "length" } } } } } }
需求:按照指定的時長範圍區間進行分組,而後在每組內再按照語種進行分組,最後再計算時長的平均值
GET /music/children/_search { "size": 0, "aggs": { "group_by_price": { "range": { "field": "length", "ranges": [ { "from": 0, "to": 60 }, { "from": 60, "to": 120 }, { "from": 120, "to": 180 } ] }, "aggs": { "group_by_languages": { "terms": { "field": "language" }, "aggs": { "average_length": { "avg": { "field": "length" } } } } } } } }
上面的示例請求,都是單個單個發的,Elasticsearch還有一種語法,能夠合併多個請求進行批量查詢,這樣能夠減小每一個請求單獨的網絡開銷,最基礎的語法示例以下:
GET /_mget { "docs": [ { "_index" : "music", "_type" : "children", "_id" : 1 }, { "_index" : "music", "_type" : "children", "_id" : 2 } ] }
mget下面的docs參數是一個數組,數組裏面每一個元素均可以定義一個文檔的_index、_type和_id元數據,_index可相同也可不相同,也能夠定義_source元數據指定想要的field。
響應的示例:
{ "docs": [ { "_index": "music", "_type": "children", "_id": "1", "_version": 4, "found": true, "_source": { "name": "gymbo", "content": "I hava a friend who loves smile, gymbo is his name", "language": "english", "length": "75", "likes": 0 } }, { "_index": "music", "_type": "children", "_id": "2", "_version": 13, "found": true, "_source": { "name": "wake me, shark me", "content": "don't let me sleep too late, gonna get up brightly early in the morning", "language": "english", "length": "55", "likes": 9 } } ] }
響應一樣是一個docs數組,數組長度與請求時保持一致,若是有文檔不存在、未搜索到或者別的緣由致使報錯,不影響總體的結果,mget的http響應碼仍然是200,每一個文檔的搜索都是獨立的。
若是批量查詢的文檔是在同一個index下面,能夠將_index元數據(_type元數據我也順便移走)移到請求行中:
GET /music/children/_mget { "docs": [ { "_id" : 1 }, { "_id" : 2 } ] }
或者是直接使用更簡單的ids數組:
GET /music/children/_mget { "ids":[1,2] }
查詢結果是同樣的。
mget是很是重要的,在進行查詢的時候,若是一次性要查詢多條數據,那麼必定要用batch批量操做的api,儘量減小網絡開銷次數,可能能夠將性能提高數倍,甚至數十倍。
本篇介紹了最經常使用的搜索、批量查詢和聚合場景的寫法,包含分組統計,平均值,排序,區間分組。這是最基本的套路,基本包含了咱們常見的需求,熟悉mysql的話,掌握起來很是快,熟悉一下Restful的語法,基本就OK了。