梯度降低(Gradient Descent)小結

    在求解機器學習算法的模型參數,即無約束優化問題時,梯度降低(Gradient Descent)是最常採用的方法之一,另外一種經常使用的方法是最小二乘法。這裏就對梯度降低法作一個完整的總結。算法 1. 梯度     在微積分裏面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來,就是梯度。好比函數f(x,y), 分別對x,y求偏導數,求得的梯度向量就是(∂f/∂x, ∂
相關文章
相關標籤/搜索