JavaShuo
欄目
標籤
2018ins--Wavelet Analysis of Speaker Dependent and Independent Prosody for Voice Conversion
時間 2021-01-11
原文
原文鏈接
單位:新加坡國立 作者:Haizhou Li abstract 現在的vc基本都是基於譜做的變換,但是和說話者相關的韻律特徵,比如基頻、能量包絡,我們認爲如果能量更好的理解基頻,就能更好的實現更好的vc效果。說話者依賴的特徵是說話者的特性,說話者獨立的特徵是語言表達的特性,在vc任務中,前者是需要轉換的,後者是需要保留的。我們提出用wavelet在不同的時間尺度分析這兩個特徵。 (譜參數與音色有
>>阅读原文<<
相關文章
1.
Voice Conversion by Cascading Automatic Speech Recognition and Text-to-Speech Synthesis with Prosody
2.
Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification
3.
2019trans--Sequence-to-Sequence Acoustic Modeling for Voice Conversion
4.
2019icas--Cross-lingual Voice Conversion with Bilingual Phonetic PosteriorGram and Average Modeling
5.
Whether To Pretrain DNN or Not?: An Empirical Analysis for Voice Conversion
6.
Many-to-many Cross-lingual Voice Conversion with a Jointly Trained Speaker Embedding Network
7.
2016 ICME:Phonetic posteriorgrams for many-to-one voice conversion without parallel data training
8.
Voice Conversion Across Arbitrary Speakers based on a Single Target-Speaker Utterance
9.
x-vector:Deep Neural Network Embeddings for Text-Independent Speaker Verification
10.
ONE-SHOT VOICE CONVERSION USING STAR-GAN
更多相關文章...
•
Scala for循環
-
Scala教程
•
Swift for 循環
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
for...of
for..of
voice
conversion
independent
prosody
analysis
speaker
dependent
action.....and
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
NLP《詞彙表示方法(六)ELMO》
2.
必看!RDS 數據庫入門一本通(附網盤鏈接)
3.
阿里雲1C2G虛擬機【99/年】羊毛黨集合啦!
4.
10秒鐘的Cat 6A網線認證儀_DSX2-5000 CH
5.
074《從零開始學Python網絡爬蟲》小記
6.
實例12--會動的地圖
7.
聽薦 | 「談笑風聲」,一次投資圈的嘗試
8.
阿里技術官手寫800多頁PDF總結《精通Java Web整合開發》
9.
設計模式之☞狀態模式實戰
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Voice Conversion by Cascading Automatic Speech Recognition and Text-to-Speech Synthesis with Prosody
2.
Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification
3.
2019trans--Sequence-to-Sequence Acoustic Modeling for Voice Conversion
4.
2019icas--Cross-lingual Voice Conversion with Bilingual Phonetic PosteriorGram and Average Modeling
5.
Whether To Pretrain DNN or Not?: An Empirical Analysis for Voice Conversion
6.
Many-to-many Cross-lingual Voice Conversion with a Jointly Trained Speaker Embedding Network
7.
2016 ICME:Phonetic posteriorgrams for many-to-one voice conversion without parallel data training
8.
Voice Conversion Across Arbitrary Speakers based on a Single Target-Speaker Utterance
9.
x-vector:Deep Neural Network Embeddings for Text-Independent Speaker Verification
10.
ONE-SHOT VOICE CONVERSION USING STAR-GAN
>>更多相關文章<<