JavaShuo
欄目
標籤
2019trans--Sequence-to-Sequence Acoustic Modeling for Voice Conversion
時間 2021-01-13
原文
原文鏈接
單位:合肥中科大&科大訊飛 時間:2019.1 期刊:TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 基於平行數據的實驗 abstract: Sequence-to- sequence ConvErsion NeTwork (SCENT)—voice conversion的聲學模型 training stage—用attention機制
>>阅读原文<<
相關文章
1.
StarGAN-VC2: Rethinking Conditional Methods for StarGAN-Based Voice Conversion
2.
Odessey2018:Average Modeling Approach to Voice Conversion with Non-Parallel Data
3.
2019icas--Cross-lingual Voice Conversion with Bilingual Phonetic PosteriorGram and Average Modeling
4.
Interspeech 2017 Series | Acoustic Model for Speech Recognition Technology
5.
ONE-SHOT VOICE CONVERSION USING STAR-GAN
6.
SINGING VOICE CONVERSION WITH NON-PARALLEL DATA
7.
聲學模型訓練----Acoustic Modeling
8.
(6) [IEEESignal12] Deep neural networks for acoustic modeling in speech recognition
9.
2018ins--Wavelet Analysis of Speaker Dependent and Independent Prosody for Voice Conversion
10.
2016 ICME:Phonetic posteriorgrams for many-to-one voice conversion without parallel data training
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
PHP開發工具
•
C# 中 foreach 遍歷的用法
相關標籤/搜索
voice
conversion
modeling
acoustic
for...of
69.for
for..loop
while&&for
for..of
1.for
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
NLP《詞彙表示方法(六)ELMO》
2.
必看!RDS 數據庫入門一本通(附網盤鏈接)
3.
阿里雲1C2G虛擬機【99/年】羊毛黨集合啦!
4.
10秒鐘的Cat 6A網線認證儀_DSX2-5000 CH
5.
074《從零開始學Python網絡爬蟲》小記
6.
實例12--會動的地圖
7.
聽薦 | 「談笑風聲」,一次投資圈的嘗試
8.
阿里技術官手寫800多頁PDF總結《精通Java Web整合開發》
9.
設計模式之☞狀態模式實戰
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
StarGAN-VC2: Rethinking Conditional Methods for StarGAN-Based Voice Conversion
2.
Odessey2018:Average Modeling Approach to Voice Conversion with Non-Parallel Data
3.
2019icas--Cross-lingual Voice Conversion with Bilingual Phonetic PosteriorGram and Average Modeling
4.
Interspeech 2017 Series | Acoustic Model for Speech Recognition Technology
5.
ONE-SHOT VOICE CONVERSION USING STAR-GAN
6.
SINGING VOICE CONVERSION WITH NON-PARALLEL DATA
7.
聲學模型訓練----Acoustic Modeling
8.
(6) [IEEESignal12] Deep neural networks for acoustic modeling in speech recognition
9.
2018ins--Wavelet Analysis of Speaker Dependent and Independent Prosody for Voice Conversion
10.
2016 ICME:Phonetic posteriorgrams for many-to-one voice conversion without parallel data training
>>更多相關文章<<