JavaShuo
欄目
標籤
Many-to-many Cross-lingual Voice Conversion with a Jointly Trained Speaker Embedding Network
時間 2021-01-11
欄目
系統網絡
简体版
原文
原文鏈接
會議:2019 APSIPA 作者:ZHOUYI Li Haizhou 單位:新加坡國立 abstract average modeling approach用一個低維度的speaker embedding和vc網絡聯合訓練,可以達到many-to-many cross-lingual的效果。 base-model: vc+i-vector作爲speaker embedding表示。 introd
>>阅读原文<<
相關文章
1.
Voice Conversion Across Arbitrary Speakers based on a Single Target-Speaker Utterance
2.
SINGING VOICE CONVERSION WITH NON-PARALLEL DATA
3.
Neural Voice Cloning with a Few Samples
4.
ONE-SHOT VOICE CONVERSION USING STAR-GAN
5.
行人屬性「Person Attribute Recognition with a Jointly-trained Holistic CNN Model」
6.
X-VECTOR:ROBUST DNN EMBEDDING FOR SPEAKER RECOGNITION
7.
2019trans--Sequence-to-Sequence Acoustic Modeling for Voice Conversion
8.
2019icas--Cross-lingual Voice Conversion with Bilingual Phonetic PosteriorGram and Average Modeling
9.
Odessey2018:Average Modeling Approach to Voice Conversion with Non-Parallel Data
10.
2018ins--Wavelet Analysis of Speaker Dependent and Independent Prosody for Voice Conversion
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XSL-FO page-number 對象
-
XSL-FO 教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
voice
conversion
manytomany
speaker
jointly
trained
embedding
network
a'+'a
系統網絡
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 讓chrome支持小於12px的文字
2.
集合的一點小總結
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基礎,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打開iOS真機調試操作
8.
improved open set domain adaptation with backpropagation 學習筆記
9.
Chrome插件 GitHub-Chart Commits3D直方圖視圖
10.
CISCO ASAv 9.15 - 體驗思科上一代防火牆
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Voice Conversion Across Arbitrary Speakers based on a Single Target-Speaker Utterance
2.
SINGING VOICE CONVERSION WITH NON-PARALLEL DATA
3.
Neural Voice Cloning with a Few Samples
4.
ONE-SHOT VOICE CONVERSION USING STAR-GAN
5.
行人屬性「Person Attribute Recognition with a Jointly-trained Holistic CNN Model」
6.
X-VECTOR:ROBUST DNN EMBEDDING FOR SPEAKER RECOGNITION
7.
2019trans--Sequence-to-Sequence Acoustic Modeling for Voice Conversion
8.
2019icas--Cross-lingual Voice Conversion with Bilingual Phonetic PosteriorGram and Average Modeling
9.
Odessey2018:Average Modeling Approach to Voice Conversion with Non-Parallel Data
10.
2018ins--Wavelet Analysis of Speaker Dependent and Independent Prosody for Voice Conversion
>>更多相關文章<<