準備hadoop2(master), Hadoop3,hadoop4,三臺機器node
vi /etc/profile.d/hadoop.shmysql
export JAVA_HOME=/usr/local/src/jdk1.8.0_92 export JRE_HOME=${JAVA_HOME}/jre export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib:$CLASSPATH export JAVA_PATH=${JAVA_HOME}/bin:${JRE_HOME}/bin export PATH=$PATH:${JAVA_PATH} export HADOOP_HOME=/usr/local/src/hadoop-2.7.7 export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin export HDFS_DATANODE_USER=root export HDFS_DATANODE_SECURE_USER=root export HDFS_SECONDARYNAMENODE_USER=root export HDFS_NAMENODE_USER=root export YARN_RESOURCEMANAGER_USER=root export YARN_NODEMANAGER_USER=root
mapred-env.sh hadoop-env.xml yarn-env.sh 至少有一個設置JAVA_HOMEweb
core-site.xml,配置hdfs端口和地址,臨時文件存放地址sql
更多參考core-site.xmldocker
<configuration> <property> <name>fs.default.name</name> <value>hdfs://hadoop2:9091</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/data/docker/hadoop/tmp</value> </property> </configuration>
hdfs-site.xml, 配置HDFS組件屬性,副本個數以及數據存放的路徑shell
更多參考hdfs-site.xmlapache
dfs.namenode.name.dir和dfs.datanode.data.dir再也不單獨配置,官網給出的配置是針對規模較大的集羣的較高配置。小程序
<font color=red>注意:這裏目錄是每臺機器上的,不要去使用volumes-from data_docker資源共享卷</font>centos
三臺機器同時作bash
mkdir -p /opt/hadoop/tmp && mkdir -p /opt/hadoop/dfs/data && mkdir -p /opt/hadoop/dfs/name
<configuration> <property> <name>dfs.namenode.http-address</name> <value>hadoop2:9092</value> </property> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/opt/hadoop/dfs/name</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/opt/hadoop/dfs/data</value> </property> <property> <name>dfs.namenode.handler.count</name> <value>100</value> </property> </configuration>
mapred-site.xml,配置使用yarn框架執行mapreduce處理程序
更多參考mapred-site.xml
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <value>hadoop2:9094</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>hadoop2:9095</value> </property> <property> <name>mapreduce.application.classpath</name> <value> /usr/local/src/hadoop-3.1.2/etc/hadoop, /usr/local/src/hadoop-3.1.2/share/hadoop/common/*, /usr/local/src/hadoop-3.1.2/share/hadoop/common/lib/*, /usr/local/src/hadoop-3.1.2/share/hadoop/hdfs/*, /usr/local/src/hadoop-3.1.2/share/hadoop/hdfs/lib/*, /usr/local/src/hadoop-3.1.2/share/hadoop/mapreduce/*, /usr/local/src/hadoop-3.1.2/share/hadoop/mapreduce/lib/*, /usr/local/src/hadoop-3.1.2/share/hadoop/yarn/*, /usr/local/src/hadoop-3.1.2/share/share/hadoop/yarn/lib/* </value> </property> </configuration>
yarn-site.xml
更多配置信息,請參考yarn-site.xml。
<configuration> <property> <name>yarn.resourcemanager.hostname</name> <value>bdfb9324ff7d</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>hadoop2:9093</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> </configuration>
配置ssh免密登陸
yum -y install openssh-server openssh-clients ssh-keygen -q -t rsa -b 2048 -f /etc/ssh/ssh_host_rsa_key -N '' ssh-keygen -q -t ecdsa -f /etc/ssh/ssh_host_ecdsa_key -N '' ssh-keygen -t dsa -f /etc/ssh/ssh_host_ed25519_key -N '' ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa #這樣能夠沒有交互 #進入~/.ssh cp id_rsa.pub authorized_keys cp authorized_keys /data/docker/hadoop/ #拷貝到共享磁盤 #在其餘docker #1. 依次完成上述操做(1-4) #2. hadoop3 ,hadoop4操做以下 cp /data/docker/hadoop/authorized_keys ~/.ssh cat id_rsa.pub >> authorized_keys cp authorized_keys /data/docker/hadoop/authorized_keys #覆蓋 #再回到hadoop2容器 cp /data/docker/hadoop/authorized_keys authorized_keys #覆蓋,這樣 #測試 #啓動hadoop3,hadoop4的ssh /usr/sbin/sshd ssh root@hadoop3 ssh root@hadoop4
配置hosts
172.17.0.9 hadoop2 172.17.0.10 hadoop3 172.17.0.11 hadoop4
配置works定義工做節點
vi /usr/local/src/hadoop-3.1.2/etc/hadoop/workers ,2.7版本中應該是slave
hadoop2 #這臺以既能夠是namenode,也能夠是datanode,不要浪費機器 hadoop3 #只作datanode hadoop4 #只作datanode
172.17.0.0/24 可用ip: 1-255 ip總數256, 子網掩碼:255.255.255.0
172.17.0.0/16 可用ip: 可用地址就是172.16.0.1-172.16.255.254. ip總數:65536 子網掩碼:255.255.0.0
docker commit hadoop2 image_c docker run --privileged -tdi --volumes-from data_docker --name hadoop2 --hostname hadoop2 --add-host hadoop2:172.17.0.8 --add-host hadoop3:172.17.0.9 --add-host hadoop4:172.17.0.10 --link mysqlcontainer:mysqlcontainer -p 5002:22 -p 8088:8088 -p 9090:9090 -p 9091:9091 -p 9092:9092 -p 9093:9093 -p 9094:9094 -p 9095:9095 -p 9096:9096 -p 9097:9097 -p 9098:9098 -p 9099:9099 centos:hadoop /bin/bash docker run --privileged -tdi --volumes-from data_docker --name hadoop3 --hostname hadoop3 --add-host hadoop2:172.17.0.8 --add-host hadoop3:172.17.0.9 --add-host hadoop4:172.17.0.10 --link mysqlcontainer:mysqlcontainer -p 5003:22 centos:hadoop /bin/bash docker run --privileged -tdi --volumes-from data_docker --name hadoop4 --hostname hadoop4 --add-host hadoop2:172.17.0.8 --add-host hadoop3:172.17.0.9 --add-host hadoop4:172.17.0.10 --link mysqlcontainer:mysqlcontainer -p 5004:22 centos:hadoop /bin/bash
首次hdfs namenode -format
你會看到最後倒數: util.ExitUtil: Exiting with status 0
start-all.sh This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
#start-dfs.sh---------------------- # jps 能夠在Master上看到以下進程: 5252 DataNode 5126 NameNode 5547 Jps 5423 SecondaryNameNode # jps slave能夠看到 1131 Jps 1052 DataNode
# start-yarn.sh------------------ # jps 能夠在Master上看到以下進程: 5890 NodeManager 5252 DataNode 5126 NameNode 6009 Jps 5423 SecondaryNameNode 5615 ResourceManager # jps slave能夠看到 1177 NodeManager 1052 DataNode 1309 Jps
訪問
http://hadoop2:9092
準備test
cat test.txt hadoop mapreduce hive hbase spark storm sqoop hadoop hive spark hadoop #hdfs dfs 看一下幫助 #建立hadoop下的目錄 hadoop fs -mkdir /input hadoop fs -ls / #上傳 hadoop fs -put test.txt /input hadoop fs -ls /input #運行hadoop自帶workcount程序 #/hadoop-mapreduce-examples-2.7.7.jar裏面有不少小程序 yarn jar /usr/local/src/hadoop-2.7.7/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar wordcount /input/test.txt /output hadoop fs -ls /output -rw-r--r-- 2 root supergroup 0 2019-06-03 01:28 /output/_SUCCESS -rw-r--r-- 2 root supergroup 60 2019-06-03 01:28 /output/part-r-00000 #查看結果 hadoop fs -cat /output/part-r-00000 #查看其餘內置程序 hadoop jar /usr/local/src/hadoop-2.7.7/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar #能夠看到grep的用法 hadoop jar /usr/local/src/hadoop-2.7.7/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar grep
http://hadoop2:9093 看到任務信息
#查看容量 hadoop fs -df -h Filesystem Size Used Available Use% hdfs://hadoop2:9091 150.1 G 412 K 129.9 G 0% #查看各個機器狀態 hdfs dfsadmin -report
文章內容由海暢智慧http://www.hichannel.net原創出品,轉載請註明!更多技術文檔和海暢產品,請關注海暢智慧官方網站。