JavaShuo
欄目
標籤
對抗樣本(論文解讀十二): Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves
時間 2021-01-13
標籤
Deep learning
對抗樣本
简体版
原文
原文鏈接
Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves Accuracy And Robustness RobertGeirhos University of T¨ubingen & IMPRS-IS [email protected] PatriciaRubisch University o
>>阅读原文<<
相關文章
1.
IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROB...
2.
對抗樣本(論文解讀十一):PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
3.
對抗樣本(論文解讀八):Towards More Robust Adversarial Attack Against Real World Object Detectors
4.
對抗樣本(論文解讀三): Adversarial Examples Improve Image Recognition
5.
對抗樣本(論文解讀五):Perceptual-Sensitive GAN for Generating Adversarial Patches
6.
對抗樣本(論文解讀七):On Physical Adversarial Patches for Object Detection
7.
對抗樣本論文學習:Deep Neural Networks are Easily Fooled
8.
INQ 論文解讀:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
9.
ECCV 2020 的對抗相關論文(對抗生成、對抗攻擊)
10.
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation——論文閱讀理解
更多相關文章...
•
C# 文本文件的讀寫
-
C#教程
•
C# 二進制文件的讀寫
-
C#教程
•
Kotlin學習(二)基本類型
•
JDK13 GA發佈:5大特性解讀
相關標籤/搜索
論文解讀
bias
increasing
biased
texture
cnns
shape
對抗
論文閱讀
樣本
PHP教程
Hibernate教程
MyBatis教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
如何將PPT某一頁幻燈片導出爲高清圖片
2.
Intellij IDEA中使用Debug調試
3.
build項目打包
4.
IDEA集成MAVEN項目極簡化打包部署
5.
eclipse如何導出java工程依賴的所有maven管理jar包(簡單明瞭)
6.
新建的Spring項目無法添加class,依賴下載失敗解決:Maven環境配置
7.
記在使用vue-cli中使用axios的心得
8.
分享提高自己作品UI設計形式感的幾個小技巧!
9.
造成 nginx 403 forbidden 的幾種原因
10.
AOP概述(什麼是AOP?)——Spring AOP(一)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROB...
2.
對抗樣本(論文解讀十一):PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
3.
對抗樣本(論文解讀八):Towards More Robust Adversarial Attack Against Real World Object Detectors
4.
對抗樣本(論文解讀三): Adversarial Examples Improve Image Recognition
5.
對抗樣本(論文解讀五):Perceptual-Sensitive GAN for Generating Adversarial Patches
6.
對抗樣本(論文解讀七):On Physical Adversarial Patches for Object Detection
7.
對抗樣本論文學習:Deep Neural Networks are Easily Fooled
8.
INQ 論文解讀:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
9.
ECCV 2020 的對抗相關論文(對抗生成、對抗攻擊)
10.
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation——論文閱讀理解
>>更多相關文章<<