JavaShuo
欄目
標籤
對抗樣本(論文解讀十二): Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves
時間 2021-01-13
標籤
Deep learning
對抗樣本
简体版
原文
原文鏈接
Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves Accuracy And Robustness RobertGeirhos University of T¨ubingen & IMPRS-IS [email protected] PatriciaRubisch University o
>>阅读原文<<
相關文章
1.
IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROB...
2.
對抗樣本(論文解讀十一):PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
3.
對抗樣本(論文解讀八):Towards More Robust Adversarial Attack Against Real World Object Detectors
4.
對抗樣本(論文解讀三): Adversarial Examples Improve Image Recognition
5.
對抗樣本(論文解讀五):Perceptual-Sensitive GAN for Generating Adversarial Patches
6.
對抗樣本(論文解讀七):On Physical Adversarial Patches for Object Detection
7.
對抗樣本論文學習:Deep Neural Networks are Easily Fooled
8.
INQ 論文解讀:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
9.
ECCV 2020 的對抗相關論文(對抗生成、對抗攻擊)
10.
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation——論文閱讀理解
更多相關文章...
•
C# 文本文件的讀寫
-
C#教程
•
C# 二進制文件的讀寫
-
C#教程
•
Kotlin學習(二)基本類型
•
JDK13 GA發佈:5大特性解讀
相關標籤/搜索
論文解讀
bias
increasing
biased
texture
cnns
shape
對抗
論文閱讀
樣本
PHP教程
Hibernate教程
MyBatis教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Window下Ribbit MQ安裝
2.
Linux下Redis安裝及集羣搭建
3.
shiny搭建網站填坑戰略
4.
Mysql8.0.22安裝與配置詳細教程
5.
Hadoop安裝及配置
6.
Python爬蟲初學筆記
7.
部署LVS-Keepalived高可用集羣
8.
keepalived+mysql高可用集羣
9.
jenkins 公鑰配置
10.
HA實用詳解
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROB...
2.
對抗樣本(論文解讀十一):PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
3.
對抗樣本(論文解讀八):Towards More Robust Adversarial Attack Against Real World Object Detectors
4.
對抗樣本(論文解讀三): Adversarial Examples Improve Image Recognition
5.
對抗樣本(論文解讀五):Perceptual-Sensitive GAN for Generating Adversarial Patches
6.
對抗樣本(論文解讀七):On Physical Adversarial Patches for Object Detection
7.
對抗樣本論文學習:Deep Neural Networks are Easily Fooled
8.
INQ 論文解讀:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
9.
ECCV 2020 的對抗相關論文(對抗生成、對抗攻擊)
10.
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation——論文閱讀理解
>>更多相關文章<<