BZOJ3235php
求出每一個點爲頂點,分別求出左上,左下,右上,右下的矩形的個數\(g[i][j]\)
並預處理出\(f[i][j]\)表示點\((i,j)\)到四個角的矩形內合法矩形個數
就能夠容斥計數啦
枚舉頂點\((i,j)\),乘上另外一側矩形個數,如圖:
可是會算重,對於這樣的狀況
減去便可ios
求\(g[i][j]\)數組,枚舉每一行,使用單調棧便可數組
複雜度\(O(n^2)\)spa
#include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<queue> #include<cmath> #include<map> #define LL long long int #define REP(i,n) for (int i = 1; i <= (n); i++) #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define cls(s,v) memset(s,v,sizeof(s)) #define mp(a,b) make_pair<int,int>(a,b) #define cp pair<int,int> using namespace std; const int maxn = 1005,maxm = 100005,INF = 0x3f3f3f3f,P = 10007; inline int read(){ int out = 0,flag = 1; char c = getchar(); while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();} while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();} return flag ? out : -out; } int f[maxn][maxn][4],g[maxn][maxn][4],n; int S[maxn][maxn],d[maxn][maxn][2]; int len[maxn],h[maxn],top,tot; void Pre(){ for (int j = 1; j <= n; j++){ for (int i = 1; i <= n; i++){ if (!S[i][j]) continue; d[i][j][0] = d[i - 1][j][0] + 1; } } for (int j = 1; j <= n; j++){ for (int i = n; i; i--){ if (!S[i][j]) continue; d[i][j][1] = d[i + 1][j][1] + 1; } } for (int k = 0; k <= 1; k++){ for (int i = 1; i <= n; i++){ top = 0; tot = 0; for (int j = 1; j <= n; j++){ if (!S[i][j]){ top = 0; tot = 0; continue; } int hh = d[i][j][k],L = 1; while (top && h[top] >= hh) tot = ((tot - h[top] * len[top] % P) + P) % P,L += len[top--]; h[++top] = hh; len[top] = L; tot = (tot + hh * L) % P; g[i][j][k] = (tot - 1) % P; } } } for (int k = 0; k <= 1; k++){ for (int i = 1; i <= n; i++){ top = 0; tot = 0; for (int j = n; j; j--){ if (!S[i][j]){ top = 0; tot = 0; continue; } int hh = d[i][j][k],L = 1; while (top && h[top] >= hh) tot = ((tot - h[top] * len[top] % P) + P) % P,L += len[top--]; h[++top] = hh; len[top] = L; tot = (tot + hh * L) % P; g[i][j][k + 2] = (tot - 1) % P; } } } for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) f[i][j][0] = (f[i - 1][j][0] + f[i][j - 1][0] - f[i - 1][j - 1][0] + g[i][j][0]) % P; for (int i = n; i; i--) for (int j = 1; j <= n; j++) f[i][j][1] = (f[i + 1][j][1] + f[i][j - 1][1] - f[i + 1][j - 1][1] + g[i][j][1]) % P; for (int i = 1; i <= n; i++) for (int j = n; j; j--) f[i][j][2] = (f[i - 1][j][2] + f[i][j + 1][2] - f[i - 1][j + 1][2] + g[i][j][2]) % P; for (int i = n; i; i--) for (int j = n; j; j--) f[i][j][3] = (f[i + 1][j][3] + f[i][j + 1][3] - f[i + 1][j + 1][3] + g[i][j][3]) % P; } void work(){ int ans = 0; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) ans = (ans + (f[1][j + 1][3] + f[i + 1][1][3] - f[i + 1][j + 1][3]) * g[i][j][0] % P) % P; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) ans = (ans + P - g[i][j][1] * f[i - 1][j + 1][2] % P) % P; printf("%d\n",(ans + P) % P); } int main(){ n = read(); REP(i,n){ char c = getchar(); while (c != 'B' && c != 'W') c = getchar(); REP(j,n) {S[i][j] = c == 'B' ? 1 : 0; c = getchar();} } Pre(); work(); return 0; }