墨卡託投影、地理座標系、地面分辨率、地圖比例尺

GIS理論(墨卡託投影、地理座標系、地面分辨率、地圖比例尺、Bing Maps Tile System) git

  墨卡託投影(Mercator Projection),又名「等角正軸圓柱投影」,荷蘭地圖學家墨卡託(Mercator)在1569年擬定,假設地球被圍在一箇中空的圓柱裏,其赤道與圓柱相接觸,而後再假想地 算法

球中心有一盞燈,把球面上的圖形投影到圓柱體上,再把圓柱體展開,這就是一幅標準緯線爲零度(即赤道)的「墨卡託投影」繪製出的世界地圖。 數據庫

1、墨卡託投影座標系(Mercator Projection express

  墨卡託投影以整個世界範圍,赤道做爲標準緯線,本初子午線做爲中央經線,二者交點爲座標原點,向東向北爲正,向西向南爲負。南北極在地圖的正下、上方,而東西方向處於地圖的正右、左。 緩存

  因爲Mercator Projection在兩極附近是趨於無限值得,所以它並沒完整展示了整個世界,地圖上最高緯度是85.05度。爲了簡化計算,咱們採用球形映射,而不是橢球體形狀。雖然採用Mercator Projection只是爲了方便展現地圖,須要知道的是,這種映射會給Y軸方向帶來0.33%的偏差。 性能

clip_image002

------------------------------------------------------------------------------------------------------------------------------------------ 優化

clip_image004

earthRadius =6378137 ui

20037508.3427892 = earthRadius * (math.pi - 0) 編碼

85.05112877980659 = (math.atan(math.exp(aa / earthRadius))-math.pi/4)*2 * 180 / math.pi spa

image = 512 * 512

groundResolution(1 level)  = (20037508.3427892 * 2) / 512 = 78271.516964

screendpi = 96

mapScale = groundResolution * 96 / 0.0254 = 295829355.455

---------------------------------------------------------------------------------------------------------------------------------------

  因爲赤道半徑爲6378137米,則赤道周長爲2*PI*r = 20037508.3427892,所以X軸的取值範圍:[-20037508.3427892,20037508.3427892]。當緯度φ接近兩極,即90°時,Y值趨向於無窮。所以一般把Y軸的取值範圍也限定在[-20037508.3427892,20037508.3427892]之間。所以在墨卡託投影座標系(米)下的座標範圍是:最小爲(-20037508.3427892, -20037508.3427892 )到最大 座標爲(20037508.3427892, 20037508.3427892)。

2、地理座標系(Geographical coordinates

  地理經度的取值範圍是[-180,180],緯度不可能到達90°,經過緯度取值範圍爲[20037508.3427892,20037508.3427892]反計算可獲得緯度值爲85.05112877980659。所以緯度取值範圍是[-85.05112877980659,85.05112877980659]。所以,地理座標系(經緯度)對應的範圍是:最小地理座標(-180,-85.05112877980659),最大地理座標(180, 85.05112877980659)。

3、地面分辨率(Ground Resolution

  地面分辨率是以一個像素(pixel)表明的地面尺寸(米)。以微軟Bing Maps爲例,當Level爲1時,圖片大小爲512*512(4個Tile),那麼赤道空間分辨率爲:赤道周長/512。其餘緯度的空間分辨率則爲 緯度圈長度/512,極端的北極則爲0。Level爲2時,赤道的空間分辨率爲 赤道周長/1024,其餘緯度爲 緯度圈長度1024。很明顯,Ground Resolution取決於兩個參數,縮放級別Level和緯度latitude ,Level決定像素的多少,latitude決定地面距離的長短。

地面分辨率的公式爲,單位:米/像素:

ground resolution = (cos(latitude * pi/180) * 2 * pi * 6378137 meters) / (256 * 2level pixels)

  最低地圖放大級別(1級),地圖是512 x 512像素。每下一個放大級別,地圖的高度和寬度分別乘於2:2級是1024 x 1024像素,3級是2048 x 2048像素,4級是4096 x 4096像素,等等。一般而言,地圖的寬度和高度能夠由如下式子計算獲得:map width = map height = 256 * 2^level pixels

4、地圖比例尺(Map Scale

  地圖比例尺是指測量相同目標時,地圖上距離與實際距離的比例。經過地圖分辨率在計算可知由Level可獲得圖片的像素大小,那麼須要把其轉換爲以米爲單位的距離,涉及到DPI(dot per inch),暫時可理解爲相似的PPI(pixel per inch),即每英寸表明多少個像素。256 * 2level / DPI 即獲得相應的英寸inch,再把英寸inch除以0.0254轉換爲米。實地距離仍舊是:cos(latitude * pi/180) * 2 * pi * 6378137 meters; 所以比例尺的公式爲:

map scale = 256 * 2level / screen dpi / 0.0254 / (cos(latitude * pi/180) * 2 * pi * 6378137)

  比例尺= 1 : (cos(latitude * pi/180) * 2 * pi * 6378137 * screen dpi) / (256 * 2level * 0.0254)

  地面分辨率和地圖比例尺之間的關係:

map scale = 1 : ground resolution * screen dpi / 0.0254 meters/inch

縮放級別

地圖寬度、高度(像素)

地面分辨率(米/像素)

地圖比例尺(以96dpi爲例)

1

512

78,271.5170

1 : 295,829,355.45

2

1,024

39,135.7585

1 : 147,914,677.73

3

2,048

19,567.8792

1 : 73,957,338.86

4

4,096

9,783.9396

1 : 36,978,669.43

5

8,192

4,891.9698

1 : 18,489,334.72

6

16,384

2,445.9849

1 : 9,244,667.36

7

32,768

1,222.9925

1 : 4,622,333.68

8

65,536

611.4962

1 : 2,311,166.84

9

131,072

305.7481

1 : 1,155,583.42

10

262,144

152.8741

1 : 577,791.71

11

524,288

76.4370

1 : 288,895.85

12

1,048,576

38.2185

1 : 144,447.93

13

2,097,152

19.1093

1 : 72,223.96

14

4,194,304

9.5546

1 : 36,111.98

15

8,388,608

4.7773

1 : 18,055.99

16

16,777,216

2.3887

1 : 9,028.00

17

33,554,432

1.1943

1 : 4,514.00

18

67,108,864

0.5972

1 : 2,257.00

19

134,217,728

0.2986

1 : 1,128.50

20

268,435,456

0.1493

1 : 564.25

21

536,870,912

0.0746

1 : 282.12

22

1,073,741,824

0.0373

1 : 141.06

23

2,147,483,648

0.0187

1 : 70.53

5、Bing Maps像素座標系和地圖圖片編碼

  爲了優化地圖系統性能,提升地圖下載和顯示速度,全部地圖都被分割成256 x 256像素大小的正方形小塊。因爲在每一個放大級別下的像素數量都不同,所以地圖圖片(Tile)的數量也不同。每一個tile都有一個XY座標值,從左上角的(0, 0)至右下角的(2^level–1, 2^level–1)。例如在3級放大級別下,全部tile的座標值範圍爲(0, 0)至(7, 7),以下圖:

clip_image006

  已知一個像素的XY座標值時,咱們很容易獲得這個像素所在的Tile的XY座標值:

tileX = floor(pixelX / 256) tileY = floor(pixelY / 256)

  爲了簡化索引和存儲地圖圖片,每一個tile的二維XY值被轉換成一維字串,即四叉樹鍵值(quardtree key,簡稱quadkey)。每一個quadkey獨立對應某個放大級別下的一個tile,而且它能夠被用做數據庫中B-tree索引值。爲了將座標值轉換成quadkey,須要將Y和X座標二進制值交錯組合,並轉換成4進制值及對應的字符串。例如,假設在放大級別爲3時,tile的XY座標值爲(3,5),quadkey計算以下:

tileX = 3 = 011(二進制)

tileY = 5 = 101(二進制)

quadkey = 100111(二進制) = 213(四進制) = 「213」

Quadkey還有其餘一些有意思的特性。第一,quadkey的長度等於該tile所對應的放大級別;第二,每一個tile的quadkey的前幾位和其父tile(上一放大級別所對應的tile)的quadkey相同,下圖中,tile 2是tile 20至23的父tile,tile 13是tile 130至133的父級:

clip_image008

  最後,quadkey提供的一維索引值一般顯示了兩個tile在XY座標系中的類似性。換句話說,兩個相鄰的tile對應的quadkey很是接近。這對於優化數據庫的性能很是重要,由於相鄰的tile一般被同時請求顯示,所以能夠將這些tile存放在相同的磁盤區域中,以減小磁盤的讀取次數。

  下面是微軟Bing Maps的TileSystem相關算法:

 

using System;

using System.Text;

namespace Microsoft.MapPoint

{

    static class TileSystem

    {

        private const double EarthRadius = 6378137;

        private const double MinLatitude = -85.05112878;

        private const double MaxLatitude = 85.05112878;

        private const double MinLongitude = -180;

        private const double MaxLongitude = 180;

        /// <summary>

        /// Clips a number to the specified minimum and maximum values.

        /// </summary>

        /// <param name="n">The number to clip.</param>

        /// <param name="minValue">Minimum allowable value.</param>

        /// <param name="maxValue">Maximum allowable value.</param>

        /// <returns>The clipped value.</returns>

        private static double Clip(double n, double minValue, double maxValue)

        {

            return Math.Min(Math.Max(n, minValue), maxValue);

        }

        /// <summary>

        ///Determines the map width and height (in pixels) at a specified level

        /// of detail.

        /// </summary>

        /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

        /// to 23 (highest detail).</param>

        /// <returns>The map width and height in pixels.</returns>

        public static uint MapSize(intlevelOfDetail)

        {

            return (uint) 256 << levelOfDetail;

        }

        /// <summary>

        ///Determines the ground resolution (in meters per pixel) at a specified

        /// latitude and level of detail.

        /// </summary>

        /// <param name="latitude">Latitude (in degrees) at which to measure the

        /// ground resolution.</param>

        /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

        /// to 23 (highest detail).</param>

        /// <returns>The ground resolution, in meters per pixel.</returns>

        public static double GroundResolution(double latitude, int levelOfDetail)

        {

            latitude = Clip(latitude, MinLatitude, MaxLatitude);

            return Math.Cos(latitude * Math.PI / 180) * 2 * Math.PI * EarthRadius / MapSize(levelOfDetail);

        }

        /// <summary>

        ///Determines the map scale at a specified latitude, level of detail,

        /// and screen resolution.

        /// </summary>

        /// <param name="latitude">Latitude (in degrees) at which to measure the

        /// map scale.</param>

        /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

        /// to 23 (highest detail).</param>

        /// <param name="screenDpi">Resolution of the screen, in dots per inch.</param>

        /// <returns>The map scale, expressed as the denominator N of the ratio 1 : N.</returns>

        public static double MapScale(double latitude, int levelOfDetail, intscreenDpi)

        {

            return GroundResolution(latitude, levelOfDetail) * screenDpi / 0.0254;

        }

        /// <summary>

        /// Converts a point from latitude/longitude WGS-84 coordinates (in degrees)

        /// into pixel XY coordinates at a specified level of detail.

        /// </summary>

        /// <param name="latitude">Latitude of the point, in degrees.</param>

        /// <param name="longitude">Longitude of the point, in degrees.</param>

        /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

        /// to 23 (highest detail).</param>

        /// <param name="pixelX">Output parameter receiving the X coordinate in pixels.</param>

        /// <param name="pixelY">Output parameter receiving the Y coordinate in pixels.</param>

        public static void LatLongToPixelXY(double latitude, double longitude, intlevelOfDetail, out int pixelX, out int pixelY)

        {

            latitude = Clip(latitude, MinLatitude, MaxLatitude);

            longitude = Clip(longitude, MinLongitude, MaxLongitude);

            double x = (longitude + 180) / 360; 

            double sinLatitude = Math.Sin(latitude * Math.PI / 180);

            double y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI);

            uint mapSize = MapSize(levelOfDetail);

            pixelX = (int) Clip(x * mapSize + 0.5, 0, mapSize - 1);

            pixelY = (int) Clip(y * mapSize + 0.5, 0, mapSize - 1);

        }

        /// <summary>

        /// Converts a pixel from pixel XY coordinates at a specified level of detail

        /// into latitude/longitude WGS-84 coordinates (in degrees).

        /// </summary>

        /// <param name="pixelX">X coordinate of the point, in pixels.</param>

        /// <param name="pixelY">Y coordinates of the point, in pixels.</param>

        /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

        /// to 23 (highest detail).</param>

        /// <param name="latitude">Output parameter receiving the latitude in degrees.</param>

        /// <param name="longitude">Output parameter receiving the longitude in degrees.</param>

        public static void PixelXYToLatLong(int pixelX, int pixelY, intlevelOfDetail, out double latitude, out double longitude)

        {

            double mapSize = MapSize(levelOfDetail);

            double x = (Clip(pixelX, 0, mapSize - 1) / mapSize) - 0.5;

            double y = 0.5 - (Clip(pixelY, 0, mapSize - 1) / mapSize);

            latitude = 90 - 360 * Math.Atan(Math.Exp(-y * 2 * Math.PI)) / Math.PI;

            longitude = 360 * x;

        }

        /// <summary>

        /// Converts pixel XY coordinates into tile XY coordinates of the tile containing

        /// the specified pixel.

        /// </summary>

        /// <param name="pixelX">Pixel X coordinate.</param>

        /// <param name="pixelY">Pixel Y coordinate.</param>

        /// <param name="tileX">Output parameter receiving the tile X coordinate.</param>

        /// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>

        public static void PixelXYToTileXY(int pixelX, int pixelY, out int tileX, out int tileY)

        {

            tileX = pixelX / 256;

            tileY = pixelY / 256;

        }

        /// <summary>

        /// Converts tile XY coordinates into pixel XY coordinates of the upper-left pixel

        /// of the specified tile.

        /// </summary>

        /// <param name="tileX">Tile X coordinate.</param>

        /// <param name="tileY">Tile Y coordinate.</param>

        /// <param name="pixelX">Output parameter receiving the pixel X coordinate.</param>

        /// <param name="pixelY">Output parameter receiving the pixel Y coordinate.</param>

        public static void TileXYToPixelXY(int tileX, int tileY, out int pixelX, out int pixelY)

        {

            pixelX = tileX * 256;

            pixelY = tileY * 256;

        }

        /// <summary>

        /// Converts tile XY coordinates into a QuadKey at a specified level of detail.

        /// </summary>

        /// <param name="tileX">Tile X coordinate.</param>

        /// <param name="tileY">Tile Y coordinate.</param>

        /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

        /// to 23 (highest detail).</param>

        /// <returns>A string containing the QuadKey.</returns>

        public static string TileXYToQuadKey(int tileX, int tileY, intlevelOfDetail)

        {

            StringBuilder quadKey = newStringBuilder();

            for (int i = levelOfDetail; i > 0; i--)

            {

                char digit = '0';

                int mask = 1 << (i - 1);

                if ((tileX & mask) != 0)

                {

                    digit++;

                }

                if ((tileY & mask) != 0)

                {

                    digit++;

                    digit++;

                }

                quadKey.Append(digit);

            }

            return quadKey.ToString();

        }

        /// <summary>

        /// Converts a QuadKey into tile XY coordinates.

        /// </summary>

        /// <param name="quadKey">QuadKey of the tile.</param>

        /// <param name="tileX">Output parameter receiving the tile X coordinate.</param>

        /// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>

        /// <param name="levelOfDetail">Output parameter receiving the level of detail.</param>

        public static void QuadKeyToTileXY(string quadKey, out int tileX, out int tileY, out intlevelOfDetail)

        {

            tileX = tileY = 0;

            levelOfDetail = quadKey.Length;

            for (int i = levelOfDetail; i > 0; i--)

            {

                int mask = 1 << (i - 1);

                switch (quadKey[levelOfDetail - i])

                {

                    case '0':

                        break;

                    case '1':

                        tileX |= mask;

                        break;

                    case '2':

                        tileY |= mask;

                        break;

                    case '3':

                        tileX |= mask;

                        tileY |= mask;

                        break;

                    default:

                        throw new ArgumentException("Invalid QuadKey digit sequence.");

                }

            }

        }

    }

}

 

--------------------------------------------------------------------------------------------------------------------------------------------------------

當咱們在用arcgis server 構建切片時,咱們會發如今緩存生成的conf.xml中有這樣的片斷:

clip_image010

在上述片斷中<LODInfo>表明了每一級切片的信息,<LevelID>表明切片的級數。

在這裏,<Scale>表明比例尺。比例尺是表示圖上距離比實地距離縮小的程度,也叫縮尺。公式爲:比例尺=圖上距離/實地距離。用數字的比例式或分數式表示比例尺的大小。例如地圖上1釐米表明實地距離500公里,可寫成:1∶50,000,000或寫成:1/50,000,000。

  <Resolution>,表明分辨率。Resolution 的實際含義表明當前地圖範圍內,1像素表明多少地圖單位(X地圖單位/像素),地圖單位取決於數據自己的空間參考。

當咱們在進行Web API的開發時,常常會碰到根據Resolution來縮放地圖的狀況。可是實際需求中咱們更須要根據Scale來縮放,所以就涉及到Scale和Resolution的轉換。

Resolution和Scale的轉換算法:

Resolution跟dpi有關,跟地圖的單位有關。(dpi表明每英寸的像素數)

  Resolution和Scale的轉換算法

舉例:

案例一:若是地圖的座標單位是米, dpi爲96

           1英寸= 2.54釐米;

           1英寸=96像素;

最終換算的單位是米;

若是當前地圖比例尺爲1: 125000000,則表明圖上1米實地125000000米;

米和像素間的換算公式:

           1英寸=0.0254米=96像素

           1像素=0.0254/96 米

則根據1:125000000比例尺,圖上1像素表明實地距離是125000000*0.0254/96 = 33072.9166666667米。咱們這個換算結果和切片的結果略微有0.07米的偏差。這個偏差產生的緣由是英寸換算釐米的參數決定的,server使用的換算參數1英寸約等於0.0254000508米。

案例二:若是地理座標系是wgs84,地圖的單位是度,dpi爲96

           Server中度和米之間的換算參數:

             1度約等於 111194.872221777米

接下來就須要進行度和像素間的換算:

當比例尺爲1:64000000米時,至關於1像素 = 64000000*0.0254000508/96 = 16933.3672米

再將米轉換爲度 16933.3672/111194.872221777 = 0.1522855043731385度

所以當地圖單位爲度時,近似計算在1:64000000 對應的Resolution爲0.1522855043731385度

驗證結果:

clip_image012

-----------------------------------------------------------------------------------------------------------------------

double resolution = scale * 0.0254000508/96/111194.872221777;

相關文章
相關標籤/搜索