墨卡託投影(Mercator Projection),又名「等角正軸圓柱投影」,荷蘭地圖學家墨卡託(Mercator)在1569年擬定,假設地球被圍在一箇中空的圓柱裏,其赤道與圓柱相接觸,而後再假想地球中心有一盞燈,把球面上的圖形投影到圓柱體上,再把圓柱體展開,這就是一幅標準緯線爲零度(即赤道)的「墨卡託投影」繪製出的世界地圖。html
1、墨卡託投影座標系(Mercator Projection)git
墨卡託投影以整個世界範圍,赤道做爲標準緯線,本初子午線做爲中央經線,二者交點爲座標原點,向東向北爲正,向西向南爲負。南北極在地圖的正下、上方,而東西方向處於地圖的正右、左。算法
因爲Mercator Projection在兩極附近是趨於無限值得,所以它並沒完整展示了整個世界,地圖上最高緯度是85.05度。爲了簡化計算,咱們採用球形映射,而不是橢球體形狀。雖然採用Mercator Projection只是爲了方便展現地圖,須要知道的是,這種映射會給Y軸方向帶來0.33%的偏差。數據庫
因爲赤道半徑爲6378137米,則赤道周長爲2*PI*r = 20037508.3427892,所以X軸的取值範圍:[-20037508.3427892,20037508.3427892]。當緯度φ接近兩極,即90°時,Y值趨向於無窮。所以一般把Y軸的取值範圍也限定在[-20037508.3427892,20037508.3427892]之間。所以在墨卡託投影座標系(米)下的座標範圍是:最小爲(-20037508.3427892, -20037508.3427892 )到最大 座標爲(20037508.3427892, 20037508.3427892)。express
2、地理座標系(Geographical coordinates)性能
地理經度的取值範圍是[-180,180],緯度不可能到達90°,經過緯度取值範圍爲[20037508.3427892,20037508.3427892]反計算可獲得緯度值爲85.05112877980659。所以緯度取值範圍是[-85.05112877980659,85.05112877980659]。所以,地理座標系(經緯度)對應的範圍是:最小地理座標(-180,-85.05112877980659),最大地理座標(180, 85.05112877980659)。優化
3、地面分辨率(Ground Resolution)
地面分辨率是以一個像素(pixel)表明的地面尺寸(米)。以微軟Bing Maps爲例,當Level爲1時,圖片大小爲512*512(4個Tile),那麼赤道空間分辨率爲:赤道周長/512。其餘緯度的空間分辨率則爲 緯度圈長度/512,極端的北極則爲0。Level爲2時,赤道的空間分辨率爲 赤道周長/1024,其餘緯度爲 緯度圈長度1024。很明顯,Ground Resolution取決於兩個參數,縮放級別Level和緯度latitude ,Level決定像素的多少,latitude決定地面距離的長短。ui
地面分辨率的公式爲,單位:米/像素:編碼
ground resolution = (cos(latitude * pi/180) * 2 * pi * 6378137 meters) / (256 * 2level pixels) spa
最低地圖放大級別(1級),地圖是512 x 512像素。每下一個放大級別,地圖的高度和寬度分別乘於2:2級是1024 x 1024像素,3級是2048 x 2048像素,4級是4096 x 4096像素,等等。一般而言,地圖的寬度和高度能夠由如下式子計算獲得:map width = map height = 256 * 2^level pixels
4、地圖比例尺(Map Scale)
地圖比例尺是指測量相同目標時,地圖上距離與實際距離的比例。經過地圖分辨率在計算可知由Level可獲得圖片的像素大小,那麼須要把其轉換爲以米爲單位的距離,涉及到DPI(dot per inch),暫時可理解爲相似的PPI(pixelper inch),即每英寸表明多少個像素。256 * 2level / DPI 即獲得相應的英寸inch,再把英寸inch除以0.0254轉換爲米。實地距離仍舊是:cos(latitude * pi/180) * 2 * pi * 6378137 meters; 所以比例尺的公式爲:
map scale = 256 * 2level / screen dpi / 0.0254 / (cos(latitude * pi/180) * 2 * pi * 6378137)
比例尺= 1 : (cos(latitude * pi/180) * 2 * pi * 6378137 * screen dpi) / (256 * 2level * 0.0254)
地面分辨率和地圖比例尺之間的關係:
map scale = 1 : ground resolution * screen dpi / 0.0254 meters/inch
縮放級別 |
地圖寬度、高度(像素) |
地面分辨率(米/像素) |
地圖比例尺(以96dpi爲例) |
1 |
512 |
78,271.5170 |
1 : 295,829,355.45 |
2 |
1,024 |
39,135.7585 |
1 : 147,914,677.73 |
3 |
2,048 |
19,567.8792 |
1 : 73,957,338.86 |
4 |
4,096 |
9,783.9396 |
1 : 36,978,669.43 |
5 |
8,192 |
4,891.9698 |
1 : 18,489,334.72 |
6 |
16,384 |
2,445.9849 |
1 : 9,244,667.36 |
7 |
32,768 |
1,222.9925 |
1 : 4,622,333.68 |
8 |
65,536 |
611.4962 |
1 : 2,311,166.84 |
9 |
131,072 |
305.7481 |
1 : 1,155,583.42 |
10 |
262,144 |
152.8741 |
1 : 577,791.71 |
11 |
524,288 |
76.4370 |
1 : 288,895.85 |
12 |
1,048,576 |
38.2185 |
1 : 144,447.93 |
13 |
2,097,152 |
19.1093 |
1 : 72,223.96 |
14 |
4,194,304 |
9.5546 |
1 : 36,111.98 |
15 |
8,388,608 |
4.7773 |
1 : 18,055.99 |
16 |
16,777,216 |
2.3887 |
1 : 9,028.00 |
17 |
33,554,432 |
1.1943 |
1 : 4,514.00 |
18 |
67,108,864 |
0.5972 |
1 : 2,257.00 |
19 |
134,217,728 |
0.2986 |
1 : 1,128.50 |
20 |
268,435,456 |
0.1493 |
1 : 564.25 |
21 |
536,870,912 |
0.0746 |
1 : 282.12 |
22 |
1,073,741,824 |
0.0373 |
1 : 141.06 |
23 |
2,147,483,648 |
0.0187 |
1 : 70.53 |
5、Bing Maps像素座標系和地圖圖片編碼
爲了優化地圖系統性能,提升地圖下載和顯示速度,全部地圖都被分割成256 x 256像素大小的正方形小塊。因爲在每一個放大級別下的像素數量都不同,所以地圖圖片(Tile)的數量也不同。每一個tile都有一個XY座標值,從左上角的(0, 0)至右下角的(2^level–1, 2^level–1)。例如在3級放大級別下,全部tile的座標值範圍爲(0, 0)至(7, 7),以下圖:
已知一個像素的XY座標值時,咱們很容易獲得這個像素所在的Tile的XY座標值:
tileX = floor(pixelX / 256)
tileY = floor(pixelY / 256)
爲了簡化索引和存儲地圖圖片,每一個tile的二維XY值被轉換成一維字串,即四叉樹鍵值(quardtree key,簡稱quadkey)。每一個quadkey獨立對應某個放大級別下的一個tile,而且它能夠被用做數據庫中B-tree索引值。爲了將座標值轉換成quadkey,須要將Y和X座標二進制值交錯組合,並轉換成4進制值及對應的字符串。例如,假設在放大級別爲3時,tile的XY座標值爲(3,5),quadkey計算以下:
tileX = 3 = 011(二進制)
tileY = 5 = 101(二進制)
quadkey = 100111(二進制)
= 213(四進制)
= 「213」
Quadkey還有其餘一些有意思的特性。第一,quadkey的長度等於該tile所對應的放大級別;第二,每一個tile的quadkey的前幾位和其父tile(上一放大級別所對應的tile)的quadkey相同,下圖中,tile 2是tile 20至23的父tile,tile 13是tile 130至133的父級:
最後,quadkey提供的一維索引值一般顯示了兩個tile在XY座標系中的類似性。換句話說,兩個相鄰的tile對應的quadkey很是接近。這對於優化數據庫的性能很是重要,由於相鄰的tile一般被同時請求顯示,所以能夠將這些tile存放在相同的磁盤區域中,以減小磁盤的讀取次數。
下面是微軟Bing Maps的TileSystem相關算法:
using
System;
using
System.Text;
namespace
Microsoft.MapPoint
{
static
class
TileSystem
{
private
const
double
EarthRadius
=
6378137
;
private
const
double
MinLatitude
=
-
85.05112878
;
private
const
double
MaxLatitude
=
85.05112878
;
private
const
double
MinLongitude
=
-
180
;
private
const
double
MaxLongitude
=
180
;
///
<summary>
///
Clips a number to the specified minimum and maximum values.
///
</summary>
///
<param name="n">
The number to clip.
</param>
///
<param name="minValue">
Minimum allowable value.
</param>
///
<param name="maxValue">
Maximum allowable value.
</param>
///
<returns>
The clipped value.
</returns>
private
static
double
Clip(
double
n,
double
minValue,
double
maxValue)
{
return
Math.Min(Math.Max(n, minValue), maxValue);
}
///
<summary>
///
Determines the map width and height (in pixels) at a specified level
///
of detail.
///
</summary>
///
<param name="levelOfDetail">
Level of detail, from 1 (lowest detail)
///
to 23 (highest detail).
</param>
///
<returns>
The map width and height in pixels.
</returns>
public
static
uint
MapSize(
int
levelOfDetail)
{
return
(
uint
)
256
<<
levelOfDetail;
}
///
<summary>
///
Determines the ground resolution (in meters per pixel) at a specified
///
latitude and level of detail.
///
</summary>
///
<param name="latitude">
Latitude (in degrees) at which to measure the
///
ground resolution.
</param>
///
<param name="levelOfDetail">
Level of detail, from 1 (lowest detail)
///
to 23 (highest detail).
</param>
///
<returns>
The ground resolution, in meters per pixel.
</returns>
public
static
double
GroundResolution(
double
latitude,
int
levelOfDetail)
{
latitude
=
Clip(latitude, MinLatitude, MaxLatitude);
return
Math.Cos(latitude
*
Math.PI
/
180
)
*
2
*
Math.PI
*
EarthRadius
/
MapSize(levelOfDetail);
}
///
<summary>
///
Determines the map scale at a specified latitude, level of detail,
///
and screen resolution.
///
</summary>
///
<param name="latitude">
Latitude (in degrees) at which to measure the
///
map scale.
</param>
///
<param name="levelOfDetail">
Level of detail, from 1 (lowest detail)
///
to 23 (highest detail).
</param>
///
<param name="screenDpi">
Resolution of the screen, in dots per inch.
</param>
///
<returns>
The map scale, expressed as the denominator N of the ratio 1 : N.
</returns>
public
static
double
MapScale(
double
latitude,
int
levelOfDetail,
int
screenDpi)
{
return
GroundResolution(latitude, levelOfDetail)
*
screenDpi
/
0.0254
;
}
///
<summary>
///
Converts a point from latitude/longitude WGS-84 coordinates (in degrees)
///
into pixel XY coordinates at a specified level of detail.
///
</summary>
///
<param name="latitude">
Latitude of the point, in degrees.
</param>
///
<param name="longitude">
Longitude of the point, in degrees.
</param>
///
<param name="levelOfDetail">
Level of detail, from 1 (lowest detail)
///
to 23 (highest detail).
</param>
///
<param name="pixelX">
Output parameter receiving the X coordinate in pixels.
</param>
///
<param name="pixelY">
Output parameter receiving the Y coordinate in pixels.
</param>
public
static
void
LatLongToPixelXY(
double
latitude,
double
longitude,
int
levelOfDetail,
out
int
pixelX,
out
int
pixelY)
{
latitude
=
Clip(latitude, MinLatitude, MaxLatitude);
longitude
=
Clip(longitude, MinLongitude, MaxLongitude);
double
x
=
(longitude
+
180
)
/
360
;
double
sinLatitude
=
Math.Sin(latitude
*
Math.PI
/
180
);
double
y
=
0.5
-
Math.Log((
1
+
sinLatitude)
/
(
1
-
sinLatitude))
/
(
4
*
Math.PI);
uint
mapSize
=
MapSize(levelOfDetail);
pixelX
=
(
int
) Clip(x
*
mapSize
+
0.5
,
0
, mapSize
-
1
);
pixelY
=
(
int
) Clip(y
*
mapSize
+
0.5
,
0
, mapSize
-
1
);
}
///
<summary>
///
Converts a pixel from pixel XY coordinates at a specified level of detail
///
into latitude/longitude WGS-84 coordinates (in degrees).
///
</summary>
///
<param name="pixelX">
X coordinate of the point, in pixels.
</param>
///
<param name="pixelY">
Y coordinates of the point, in pixels.
</param>
///
<param name="levelOfDetail">
Level of detail, from 1 (lowest detail)
///
to 23 (highest detail).
</param>
///
<param name="latitude">
Output parameter receiving the latitude in degrees.
</param>
///
<param name="longitude">
Output parameter receiving the longitude in degrees.
</param>
public
static
void
PixelXYToLatLong(
int
pixelX,
int
pixelY,
int
levelOfDetail,
out
double
latitude,
out
double
longitude)
{
double
mapSize
=
MapSize(levelOfDetail);
double
x
=
(Clip(pixelX,
0
, mapSize
-
1
)
/
mapSize)
-
0.5
;
double
y
=
0.5
-
(Clip(pixelY,
0
, mapSize
-
1
)
/
mapSize);
latitude
=
90
-
360
*
Math.Atan(Math.Exp(
-
y
*
2
*
Math.PI))
/
Math.PI;
longitude
=
360
*
x;
}
///
<summary>
///
Converts pixel XY coordinates into tile XY coordinates of the tile containing
///
the specified pixel.
///
</summary>
///
<param name="pixelX">
Pixel X coordinate.
</param>
///
<param name="pixelY">
Pixel Y coordinate.
</param>
///
<param name="tileX">
Output parameter receiving the tile X coordinate.
</param>
///
<param name="tileY">
Output parameter receiving the tile Y coordinate.
</param>
public
static
void
PixelXYToTileXY(
int
pixelX,
int
pixelY,
out
int
tileX,
out
int
tileY)
{
tileX
=
pixelX
/
256
;
tileY
=
pixelY
/
256
;
}
///
<summary>
///
Converts tile XY coordinates into pixel XY coordinates of the upper-left pixel
///
of the specified tile.
///
</summary>
///
<param name="tileX">
Tile X coordinate.
</param>
///
<param name="tileY">
Tile Y coordinate.
</param>
///
<param name="pixelX">
Output parameter receiving the pixel X coordinate.
</param>
///
<param name="pixelY">
Output parameter receiving the pixel Y coordinate.
</param>
public
static
void
TileXYToPixelXY(
int
tileX,
int
tileY,
out
int
pixelX,
out
int
pixelY)
{
pixelX
=
tileX
*
256
;
pixelY
=
tileY
*
256
;
}
///
<summary>
///
Converts tile XY coordinates into a QuadKey at a specified level of detail.
///
</summary>
///
<param name="tileX">
Tile X coordinate.
</param>
///
<param name="tileY">
Tile Y coordinate.
</param>
///
<param name="levelOfDetail">
Level of detail, from 1 (lowest detail)
///
to 23 (highest detail).
</param>
///
<returns>
A string containing the QuadKey.
</returns>
public
static
string
TileXYToQuadKey(
int
tileX,
int
tileY,
int
levelOfDetail)
{
StringBuilder quadKey
=
new
StringBuilder();
for
(
int
i
=
levelOfDetail; i
>
0
; i
--
)
{
char
digit
=
'
0
'
;
int
mask
=
1
<<
(i
-
1
);
if
((tileX
&
mask)
!=
0
)
{
digit
++
;
}
if
((tileY
&
mask)
!=
0
)
{
digit
++
;
digit
++
;
}
quadKey.Append(digit);
}
return
quadKey.ToString();
}
///
<summary>
///
Converts a QuadKey into tile XY coordinates.
///
</summary>
///
<param name="quadKey">
QuadKey of the tile.
</param>
///
<param name="tileX">
Output parameter receiving the tile X coordinate.
</param>
///
<param name="tileY">
Output parameter receiving the tile Y coordinate.
</param>
///
<param name="levelOfDetail">
Output parameter receiving the level of detail.
</param>
public
static
void
QuadKeyToTileXY(
string
quadKey,
out
int
tileX,
out
int
tileY,
out
int
levelOfDetail)
{
tileX
=
tileY
=
0
;
levelOfDetail
=
quadKey.Length;
for
(
int
i
=
levelOfDetail; i
>
0
; i
--
)
{
int
mask
=
1
<<
(i
-
1
);
switch
(quadKey[levelOfDetail
-
i])
{
case
'
0
'
:
break
;
case
'
1
'
:
tileX
|=
mask;
break
;
case
'
2
'
:
tileY
|=
mask;
break
;
case
'
3
'
:
tileX
|=
mask;
tileY
|=
mask;
break
;
default
:
throw
new
ArgumentException(
"
Invalid QuadKey digit sequence.
"
);
}
}
}
}
}
注:本文中內容來源於互聯網整理而成,如涉及到任何侵權等行爲請聯繫本人。
推薦資源:
《Bing Maps Tile System》
轉載自http://www.cnblogs.com/beniao/archive/2010/04/18/1714544.html