高德AR & 車道級導航技術演進與實踐

2020雲棲大會於9月17日-18日在線上舉行,阿里巴巴高德地圖攜手合做夥伴精心組織了「智慧出行」專場,爲你們分享高德地圖在打造基於DT+AI和全面上雲架構下的新一代出行生活服務平臺過程當中的思考和實踐,並重點分享了「高精地圖、高精算法、智能時空預測模型、自動駕駛、AR導航、車道級技術」等話題。算法

「高德技術」把講師分享的主要內容整理成文並陸續發佈出來,本文爲第2篇。網絡

阿里巴巴高級地圖技術專家王前衛分享的話題是《AR&車道級導航技術演進與實踐》。他爲你們介紹了這些領域的核心技術、階段成果及將來方向。架構

王前衛主要分享了三部分的內容:框架

  • 技術背景
  • 當前進展
  • 核心技術

以往,高德經過全球衛星定位系統和數字化的電子地圖爲用戶提供了一款道路級的導航服務,幫助用戶方便快捷的到達目的地。如今經過引入更能理解環境,感知環境的視覺感知系統,以及經過引入更貼近現實,更精細的車道級數據,爲用戶精心打造了一款基於實景的車道級導航產品。它能爲用戶帶來一種全新的導航體驗,作到所見即所得。性能

這款產品包含哪些功能呢?AR導航經過視頻加強技術實現了引導信息與現實世界更完美的貼合,爲用戶提供簡單易懂的方向性指引。這樣用戶不再會由於走到複雜路口而走錯路;在距離路口較近,且用戶行駛在非正確的車道上時,高德AR導航也能進行及時準確的變道提醒;在路口等紅綠燈的時候,幫助用戶實時觀察周邊環境,及時提醒用戶,紅燈已變綠燈,或者前車已經啓動。AR導航功能一經上線就得到了用戶的好評。學習

核心技術揭祕大數據

高德AR導航須要具有三方面的能力:優化

  • 對周邊環境實時的感知能力
  • 車道級的高精定位能力
  • 道路數據的精細化表達能力

環境實時感知spa

在環境感知上,高德AR導航選擇了成本較低但目前使用普遍的視覺技術,經過深度學習算法來感知周圍的環境。其中最大的挑戰在於如何設計一款輕量化的深度學習模型,既能在低算力的設備上實時運行,同時能保證較高識別精度。高德主要在三個方面進行了優化:設計

第一,在數據上,高德採用了海量多源大數據的融合和提取來保證訓練樣本的多樣性和覆蓋度;第二,在算法上,主要經過優化網絡模型,特徵共享等方法來保證算法的準確度;第三,在性能上,經過知識蒸餾,模型的量化算法,多任務的跟蹤等方法來保證在低算力上能流暢運行。

高精定位

GPS定位精度不足,信號干擾大,特別是在遇到城市森林或者是天氣很差的時候,會產生信號漂移、精度沒法保證。目前精度不足已經成爲大多數導航產品用戶體驗提高的瓶頸。基於此,高德提出了一種基於雲端一體化視覺定位技術,基於端上圖像,結合雲端視圖大數據,經過神經網絡迴歸出設備絕對位姿。與此同時,經過端上識別車道線、道路邊沿等標識,進行相對定位。最終結合時空一致性,進行雲和端的融合,大幅提高了定位精度,將定位偏差提高了一個數量級。

在沒有網絡的時候,如何使用高精度定位呢?基於成本較低的GPS、慣導和視覺傳感器,高德設計研發了多源緊耦合SLAM(MT-SLAM)技術,經過算法的深度融合實現低成本高精度的位置姿態估計,爲高精地圖衆包採集、車道級AR導航等業務提供很好的能力支撐。其相對位置精度30cm佔比在82%以上。

位置姿態的提高,主要是根據GNSS不一樣信息的精度特性,採用分層緊耦合的融合框架,對信息充分利用,同時考慮運動約束,在減小優化維度的同時也提升精度;根據實際場景的精度特色,縮減內層優化對象,來提高優化效率;根據協方差應用場景,採用增量遞歸的方式提高協方差恢復效率。

在實際的用戶場景中,定位遇到的環境是比較複雜的,在實現方式上,有的是基於手機RTK技術,有的是基於視覺傳感技術。在不一樣場景下,有的須要標準精度定位,也有的須要高精度的定位能力。

如何下降成本,提高效率,以成本最小化的方式來實現一體化定位技術應用和落地呢。高德設計了一套高精/高標一體化融合定位系統。基於成熟的差分衛星定位或環境語義信息,構建輕量化的高精定位能力,而且和標精的導航定位結合造成一體化的融合定位引擎,知足自動駕駛、車道級導航等不一樣業務的須要。

一體化定位引擎,已具有完整的道路級標精、車道級高精定位能力,高精、標精定位結果獨立輸出又相互關聯,爲導航和自動駕駛聯動提供便利,確保在全場景下的定位結果輸出,保證定位連續性。

道路數據的精細化表達

如今有了車道級高精的定位,也有了對周邊環境的實時感知,最後還須要考慮的是如何把標準精度數據表達得更加精細,如何經過創建道路模型,使引導信息的表達更加貼近現實場景。

你們首先能想到的是經過高精數據。高精數據的釐米級精度,確實能更真實的反映真實世界。然而,爲了追求低成本,高覆蓋,高德選擇了利用標準數據精度,加上道路屬性信息,經過算法來構建高精道路數據模型。

高德主要經過兩個方面來進行模型構建,一是道路的模型,主要是利用SD的形點數據,結合道路的車道屬性信息,經過對路口的切分、建模、還原等算法來創建道路的三維模型。二是實景中的引導信息展現,主要利用規劃路徑信息和引導信息,結合實時的道路圖像特徵提取信息,再加融合的高精定位,在不一樣的場景下來分別構建對應的引導線模型。

目前高德的這套模型構建算法,已在實際項目中落地。其車道級三維模型已經可以很好的反映真實世界,更加逼近現實世界;其AR導航的指示引導的鋪路線和引導線,在絕大多數場景已經作了和實景道路的貼合。

相關文章
相關標籤/搜索