簡單的理解協同過濾: 相似興趣愛好的人喜歡相似的東西,具備相似屬性的物品可以推薦給喜歡同類物品的人。比方,user A喜歡武俠片。user B也喜歡武俠片。那麼可以把A喜歡而B沒看過的武俠片推薦給B,反之亦然。這樣的模式稱爲基於用戶的協同過濾推薦(User-User Collaborative Filtering Recommendation)。再比方User A買了《java 核心技術卷一》。那麼可以推薦給用戶《java核心技術卷二》《java編程思想》,這樣的模式稱爲基於物品的協同過濾(Item-Item Collaborative Filtering Recommendation).
如下是亞馬遜中查看《java核心技術卷一》這本書的推薦結果:
css
如下參考《集體智慧編程》一書,實現基於歐幾里德距離和基於皮爾遜相關度的用戶相似度計算和推薦。java
movies | Lady in the Water | Snakes on a Plane | Just My Luck | Superman Returns | You, Me and Dupree | The Night Listener |
---|---|---|---|---|---|---|
Lisa | 2.5 | 3.5 | 3.0 | 3.5 | 2.5 | 3.0 |
Gene | 3.0 | 3.5 | 1.5 | 5.0 | 3.5 | 3.0 |
Michael | 2.5 | - | 3.0 | 3.5 | - | 4.0 |
Claudia | - | 3.5 | 3.0 | 4.0 | 2.5 | 4.5 |
Mick | 3.0 | 4.0 | 2.0 | 3.0 | 2.0 | |
Jack | 3.0 | 4.0 | - | 5.0 | 3.5 | 3.0 |
Toby | - | 4.5 | - | 4.0 | 1.0 | - |
critics={'Lisa': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
#返回一個有關person1與person2的基於距離的相似度評價
def sim_distance(prefs, person1, person2):
#獲得shared_item的列表
ci = {}
for item in prefs[person1]:
if item in prefs[person2]:
ci[item] = prefs[person1][item] - prefs[person2][item]
if len(ci) == 1: # confuses pearson metric
return sim_distance(prefs, person1, person2)
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
for item in prefs[person1] if item in prefs[person2]])
return 1/(1 + sqrt(sum_of_squares))
計算Lisa和Gene之間的歐式距離:python
print(sim_distance(critics,'Lisa','Gene'))
結果:編程
0.294298055086
#返回一個有關person1與person2的基於皮爾遜相關度評價
def sim_pearson(prefs,p1,p2):
# Get the list of mutually rated items
si={}
for item in prefs[p1]:
if item in prefs[p2]: si[item]=1
# if they are no ratings in common, return 0
if len(si)==0: return 0
# Sum calculations
n=len(si)
# Sums of all the preferences
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
# Sums of the squares
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])
# Sum of the products
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
# Calculate r (Pearson score)
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return 0
r=num/den
return r
計算Lisa和Gene之間的皮爾遜相關係數:json
print(sim_pearson(critics,'Lisa','Gene'))
結果:ruby
0.396059017191
# 從反應偏好的字典中返回最爲匹配者
# 返回結果的個數和相似度函數均爲可選參數
def topMatches(prefs, person, n=5, similarity=sim_pearson):
scores = [(similarity(prefs, person, other), other)
for other in prefs if other != person]
scores.sort(reverse=True)
return scores[0:n]
返回4個和Toby品味最相似的用戶:bash
print(topMatches(critics,'Toby',n=4))
結果:markdown
yaopans-MacBook-Pro:ucas01 yaopan$ python recommend.py
[(0.9912407071619299, 'Lisa'), (0.9244734516419049, 'Mick'), (0.8934051474415647, 'Claudia'), (0.66284898035987, 'Jack')]
def getRecommendations(prefs,person,similarity=sim_pearson):
totals={}
simSums={}
for other in prefs:
#和其它人比較,跳過本身
if other==person: continue
sim=similarity(prefs,person,other)
#忽略評價值爲0或小於0的狀況
if sim<=0: continue
for item in prefs[other]:
# 僅僅對本身還未看過到影片進行評價
if item not in prefs[person] or prefs[person][item]==0:
# 相似度*評價值
totals.setdefault(item,0)
totals[item]+=prefs[other][item]*sim
# 相似度之和
simSums.setdefault(item,0)
simSums[item]+=sim
# 創建一個歸一化列表
rankings=[(total/simSums[item],item) for item,total in totals.items()]
# 返回通過排序的列表
rankings.sort()
rankings.reverse()
return rankings
給Toby推薦:函數
print(getRecommendations(critics,'Toby'))
推薦結果post
yaopans-MacBook-Pro:ucas01 yaopan$ python recommend.py
[(3.3477895267131013, 'The Night Listener'), (2.8325499182641614, 'Lady in the Water'), (2.5309807037655645, 'Just My Luck')]
基於物品推薦和基於用戶推薦相似。把物品和用戶調換。
轉換函數:
def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{})
result[item][person]=prefs[person][item]
return result
返回和Superman Returns相似的電影:
movies=transformPrefs(critics)
print("和Superman Returns相似的電影:")
print(topMatches(movies,'Superman Returns'))
結果:
[(0.6579516949597695, 'You, Me and Dupree'), (0.4879500364742689, 'Lady in the Water'), (0.11180339887498941, 'Snakes on a Plane'), (-0.1798471947990544, 'The Night Listener'), (-0.42289003161103106, 'Just My Luck')]
結果爲負的是最不相關的。
代碼下載地址:
recommend.py