文本類似性熱度統計算法實現(一)-整句熱度統計

1. 場景描述

軟件老王在上一節介紹到類似性熱度統計的4個需求(文本類似性熱度統計(python版)),根據需求要從不一樣維度進行統計:html

(1)分組不分句熱度統計(根據某列首先進行分組,而後再對描述類列進行類似性統計);
(2)分組分句熱度統計(根據某列首先進行分組,而後對描述類列按照標點符號進行拆分,而後再對這些句進行熱度統計);
(3)整句及分句熱度統計;(對描述類列/按標點符號進行分句,進行熱度統計)
(4)熱詞統計(對描述類類進行熱詞統計,反饋改方式作不不大)python

2. 解決方案

熱詞統計統計對業務沒啥幫助,軟件老王就是用了jieba分詞,已經包含在其餘幾個需求中了,再也不介紹了,直接介紹整句及分句熱度統計,方案包含完整的excel讀入,結果寫入到excel及導航到明細等。算法

2.1 完整代碼

完整代碼,有須要的朋友能夠直接拿走,不想看代碼介紹的,能夠直接拿走執行。app

import jieba.posseg as pseg
import jieba.analyse
import xlwt
import openpyxl
from gensim import corpora, models, similarities
import re

#停詞函數
def StopWordsList(filepath):
    wlst = [w.strip() for w in open(filepath, 'r', encoding='utf8').readlines()]
    return wlst

def str_to_hex(s):
    return ''.join([hex(ord(c)).replace('0x', '') for c in s])

# jieba分詞
def seg_sentence(sentence, stop_words):
    stop_flag = ['x', 'c', 'u', 'd', 'p', 't', 'uj', 'f', 'r']
    sentence_seged = pseg.cut(sentence)
    outstr = []
    for word, flag in sentence_seged:
        if word not in stop_words and flag not in stop_flag:
            outstr.append(word)
    return outstr

if __name__ == '__main__':
    #1 這些是jieba分詞的自定義詞典,軟件老王這裏添加的格式行業術語,格式就是文檔,一列一個詞一行就好了,
    # 這個幾個詞典軟件老王就不上傳了,可註釋掉。
    jieba.load_userdict("g1.txt")
    jieba.load_userdict("g2.txt")
    jieba.load_userdict("g3.txt")

    #2 停用詞,簡單理解就是此次詞不分割,這個軟件老王找的網上通用的,會提交下。
    spPath = 'stop.txt'
    stop_words = StopWordsList(spPath)

    #3 excel處理
    wbk = xlwt.Workbook(encoding='ascii')
    sheet = wbk.add_sheet("軟件老王sheet")  # sheet名稱
    sheet.write(0, 0, '表頭-軟件老王1')
    sheet.write(0, 1, '表頭-軟件老王2')
    sheet.write(0, 2, '導航-連接到明細sheet表')
    wb = openpyxl.load_workbook('軟件老王-source.xlsx')
    ws = wb.active
    col = ws['B']
    # 4 類似性處理
    rcount = 1
    texts = []
    orig_txt = []
    key_list = []
    name_list = []
    sheet_list = []

    for cell in col:
        if cell.value is None:
            continue
        if not isinstance(cell.value, str):
            continue
        item = cell.value.strip('\n\r').split('\t')  # 製表格切分
        string = item[0]
        if string is None or len(string) == 0:
            continue
        else:
            textstr = seg_sentence(string, stop_words)
            texts.append(textstr)
            orig_txt.append(string)
    dictionary = corpora.Dictionary(texts)
    feature_cnt = len(dictionary.token2id.keys())
    corpus = [dictionary.doc2bow(text) for text in texts]
    tfidf = models.LsiModel(corpus)
    index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features=feature_cnt)
    result_lt = []
    word_dict = {}
    count =0
    for keyword in orig_txt:
        count = count+1
        print('開始執行,第'+ str(count)+'行')
        if keyword in result_lt or keyword is None or len(keyword) == 0:
            continue
        kw_vector = dictionary.doc2bow(seg_sentence(keyword, stop_words))
        sim = index[tfidf[kw_vector]]
        result_list = []
        for i in range(len(sim)):
            if sim[i] > 0.5:
                if orig_txt[i] in result_lt and orig_txt[i] not in result_list:
                    continue
                result_list.append(orig_txt[i])
                result_lt.append(orig_txt[i])
        if len(result_list) >0:
            word_dict[keyword] = len(result_list)
        if len(result_list) >= 1:
            sname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", keyword[0:10])+ '_'\
                    + str(len(result_list)+ len(str_to_hex(keyword))) + str_to_hex(keyword)[-5:]
            sheet_t = wbk.add_sheet(sname)  # Excel單元格名字
            for i in range(len(result_list)):
                sheet_t.write(i, 0, label=result_list[i])

    #5 按照熱度排序 -軟件老王
    with open("rjlw.txt", 'w', encoding='utf-8') as wf2:
        orderList = list(word_dict.values())
        orderList.sort(reverse=True)
        count = len(orderList)
        for i in range(count):
            for key in word_dict:
                if word_dict[key] == orderList[i]:
                    key_list.append(key)
                    word_dict[key] = 0
        wf2.truncate()
    #6 寫入目標excel
    for i in range(len(key_list)):
        sheet.write(i+rcount, 0, label=key_list[i])
        sheet.write(i+rcount, 1, label=orderList[i])
        if orderList[i] >= 1:
            shname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", key_list[i][0:10]) \
                     + '_'+ str(orderList[i]+ len(str_to_hex(key_list[i])))+ str_to_hex(key_list[i])[-5:]
            link = 'HYPERLINK("#%s!A1";"%s")' % (shname, shname)
            sheet.write(i+rcount, 2, xlwt.Formula(link))
    rcount = rcount + len(key_list)
    key_list = []
    orderList = []
    texts = []
    orig_txt = []
    wbk.save('軟件老王-target.xls')

2.2 代碼說明

(1) #1 如下代碼 是jieba分詞的自定義詞典,軟件老王這裏添加的格式行業術語,格式就是文檔,就一列,一個詞一行就好了, 這個幾個行業詞典軟件老王就不上傳了,可註釋掉。函數

jieba.load_userdict("g1.txt")
    jieba.load_userdict("g2.txt")
    jieba.load_userdict("g3.txt")

(2) #2 停用詞,簡單理解就是這些詞不拆分,這個文件軟件老王是從網上找的通用的,也能夠不用。excel

spPath = 'stop.txt'
    stop_words = StopWordsList(spPath)

(3) #3 excel處理,這裏新增了名稱爲「軟件老王sheet」的sheet,表頭有三個,分別爲「表頭-軟件老王1」,「表頭-軟件老王2」,「導航-連接到明細sheet表」,其中「導航-連接到明細sheet表」帶超連接,能夠導航到明細數據。code

wbk = xlwt.Workbook(encoding='ascii')
    sheet = wbk.add_sheet("軟件老王sheet")  # sheet名稱
    sheet.write(0, 0, '表頭-軟件老王1')
    sheet.write(0, 1, '表頭-軟件老王2')
    sheet.write(0, 2, '導航-連接到明細sheet表')
    wb = openpyxl.load_workbook('軟件老王-source.xlsx')
    ws = wb.active
    col = ws['B']

(4)# 4 類似性處理orm

算法原理在(文本類似性熱度統計(python版)中有詳細說明。htm

rcount = 1
    texts = []
    orig_txt = []
    key_list = []
    name_list = []
    sheet_list = []
    for cell in col:
        if cell.value is None:
            continue
        if not isinstance(cell.value, str):
            continue
        item = cell.value.strip('\n\r').split('\t')  # 製表格切分
        string = item[0]
        if string is None or len(string) == 0:
            continue
        else:
            textstr = seg_sentence(string, stop_words)
            texts.append(textstr)
            orig_txt.append(string)
    dictionary = corpora.Dictionary(texts)
    feature_cnt = len(dictionary.token2id.keys())
    corpus = [dictionary.doc2bow(text) for text in texts]
    tfidf = models.LsiModel(corpus)
    index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features=feature_cnt)
    result_lt = []
    word_dict = {}
    count =0
    for keyword in orig_txt:
        count = count+1
        print('開始執行,第'+ str(count)+'行')
        if keyword in result_lt or keyword is None or len(keyword) == 0:
            continue
        kw_vector = dictionary.doc2bow(seg_sentence(keyword, stop_words))
        sim = index[tfidf[kw_vector]]
        result_list = []
        for i in range(len(sim)):
            if sim[i] > 0.5:
                if orig_txt[i] in result_lt and orig_txt[i] not in result_list:
                    continue
                result_list.append(orig_txt[i])
                result_lt.append(orig_txt[i])
        if len(result_list) >0:
            word_dict[keyword] = len(result_list)
        if len(result_list) >= 1:
            sname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", keyword[0:10])+ '_'\
                    + str(len(result_list)+ len(str_to_hex(keyword))) + str_to_hex(keyword)[-5:]
            sheet_t = wbk.add_sheet(sname)  # Excel單元格名字
            for i in range(len(result_list)):
                sheet_t.write(i, 0, label=result_list[i])

(5) #5 按照熱度高低排序 -軟件老王blog

with open("rjlw.txt", 'w', encoding='utf-8') as wf2:
        orderList = list(word_dict.values())
        orderList.sort(reverse=True)
        count = len(orderList)
        for i in range(count):
            for key in word_dict:
                if word_dict[key] == orderList[i]:
                    key_list.append(key)
                    word_dict[key] = 0
        wf2.truncate()

(6) #6 寫入目標excel-軟件老王

for i in range(len(key_list)):
        sheet.write(i+rcount, 0, label=key_list[i])
        sheet.write(i+rcount, 1, label=orderList[i])
        if orderList[i] >= 1:
            shname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", key_list[i][0:10]) \
                     + '_'+ str(orderList[i]+ len(str_to_hex(key_list[i])))+ str_to_hex(key_list[i])[-5:]
            link = 'HYPERLINK("#%s!A1";"%s")' % (shname, shname)
            sheet.write(i+rcount, 2, xlwt.Formula(link))
    rcount = rcount + len(key_list)
    key_list = []
    orderList = []
    texts = []
    orig_txt = []
    wbk.save('軟件老王-target.xls')

2.3 效果圖

(1)軟件老王-source.xlsx

(2)軟件老王-target.xls

(3)簡單說明

​ 真實數據不太方便公佈,隨意造了幾個演示數聽說明下效果格式。


I’m 「軟件老王」,若是以爲還能夠的話,關注下唄,後續更新秒知!歡迎討論區、同名公衆號留言交流!

相關文章
相關標籤/搜索