在Python數據類型方法精心整理,沒必要死記硬背,看看源碼一切都有了之中,認識了python基本的數據類型和數據結構,如今認識一個高級的:Collectionshtml
這個模塊對上面的數據結構作了封裝,增長了一些很酷的數據結構,好比:node
a)Counter: 計數器,用於統計元素的數量python
b)OrderDict:有序字典數據結構
c)defaultdict:值帶有默認類型的字典app
d)namedtuple:可命名元組,經過名字來訪問元組元素ide
e)deque :雙向隊列,隊列頭尾均可以放,也均可以取(與單向隊列對比,單向隊列只能一頭放,另外一頭取)oop
1. Counterui
計數器,用於統計對象中每一個元素出現的個數this
按照老慣例,先看源碼:url
class Counter(dict): '''Dict subclass for counting hashable items. Sometimes called a bag or multiset. Elements are stored as dictionary keys and their counts are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements [('a', 5), ('b', 4), ('c', 3)] >>> sorted(c) # list all unique elements ['a', 'b', 'c', 'd', 'e'] >>> ''.join(sorted(c.elements())) # list elements with repetitions 'aaaaabbbbcccdde' >>> sum(c.values()) # total of all counts >>> c['a'] # count of letter 'a' >>> for elem in 'shazam': # update counts from an iterable ... c[elem] += 1 # by adding 1 to each element's count >>> c['a'] # now there are seven 'a' >>> del c['b'] # remove all 'b' >>> c['b'] # now there are zero 'b' >>> d = Counter('simsalabim') # make another counter >>> c.update(d) # add in the second counter >>> c['a'] # now there are nine 'a' >>> c.clear() # empty the counter >>> c Counter() Note: If a count is set to zero or reduced to zero, it will remain in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc') >>> c['b'] -= 2 # reduce the count of 'b' by two >>> c.most_common() # 'b' is still in, but its count is zero [('a', 3), ('c', 1), ('b', 0)] ''' # References: # http://en.wikipedia.org/wiki/Multiset # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm # http://code.activestate.com/recipes/259174/ # Knuth, TAOCP Vol. II section 4.6.3 def __init__(self, iterable=None, **kwds): '''Create a new, empty Counter object. And if given, count elements from an input iterable. Or, initialize the count from another mapping of elements to their counts. >>> c = Counter() # a new, empty counter >>> c = Counter('gallahad') # a new counter from an iterable >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping >>> c = Counter(a=4, b=2) # a new counter from keyword args ''' super(Counter, self).__init__() self.update(iterable, **kwds) def __missing__(self, key): """ 對於不存在的元素,返回計數器爲0 """ 'The count of elements not in the Counter is zero.' # Needed so that self[missing_item] does not raise KeyError return 0 def most_common(self, n=None): """ 數量大於等n的全部元素和計數器 """ '''List the n most common elements and their counts from the most common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3) [('a', 5), ('b', 4), ('c', 3)] ''' # Emulate Bag.sortedByCount from Smalltalk if n is None: return sorted(self.iteritems(), key=_itemgetter(1), reverse=True) return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) def elements(self): """ 計數器中的全部元素,注:此處非全部元素集合,而是包含全部元素集合的迭代器 """ '''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC') >>> sorted(c.elements()) ['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) >>> product = 1 >>> for factor in prime_factors.elements(): # loop over factors ... product *= factor # and multiply them >>> product Note, if an element's count has been set to zero or is a negative number, elements() will ignore it. ''' # Emulate Bag.do from Smalltalk and Multiset.begin from C++. return _chain.from_iterable(_starmap(_repeat, self.iteritems())) # Override dict methods where necessary @classmethod def fromkeys(cls, iterable, v=None): # There is no equivalent method for counters because setting v=1 # means that no element can have a count greater than one. raise NotImplementedError( 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(self, iterable=None, **kwds): """ 更新計數器,其實就是增長;若是原來沒有,則新建,若是有則加一 """ '''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which') >>> c.update('witch') # add elements from another iterable >>> d = Counter('watch') >>> c.update(d) # add elements from another counter >>> c['h'] # four 'h' in which, witch, and watch ''' # The regular dict.update() operation makes no sense here because the # replace behavior results in the some of original untouched counts # being mixed-in with all of the other counts for a mismash that # doesn't have a straight-forward interpretation in most counting # contexts. Instead, we implement straight-addition. Both the inputs # and outputs are allowed to contain zero and negative counts. if iterable is not None: if isinstance(iterable, Mapping): if self: self_get = self.get for elem, count in iterable.iteritems(): self[elem] = self_get(elem, 0) + count else: super(Counter, self).update(iterable) # fast path when counter is empty else: self_get = self.get for elem in iterable: self[elem] = self_get(elem, 0) + 1 if kwds: self.update(kwds) def subtract(self, iterable=None, **kwds): """ 相減,原來的計數器中的每個元素的數量減去後添加的元素的數量 """ '''Like dict.update() but subtracts counts instead of replacing them. Counts can be reduced below zero. Both the inputs and outputs are allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which') >>> c.subtract('witch') # subtract elements from another iterable >>> c.subtract(Counter('watch')) # subtract elements from another counter >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch -1 ''' if iterable is not None: self_get = self.get if isinstance(iterable, Mapping): for elem, count in iterable.items(): self[elem] = self_get(elem, 0) - count else: for elem in iterable: self[elem] = self_get(elem, 0) - 1 if kwds: self.subtract(kwds) def copy(self): """ 拷貝 """ 'Return a shallow copy.' return self.__class__(self) def __reduce__(self): """ 返回一個元組(類型,元組) """ return self.__class__, (dict(self),) def __delitem__(self, elem): """ 刪除元素 """ 'Like dict.__delitem__() but does not raise KeyError for missing values.' if elem in self: super(Counter, self).__delitem__(elem) def __repr__(self): if not self: return '%s()' % self.__class__.__name__ items = ', '.join(map('%r: %r'.__mod__, self.most_common())) return '%s({%s})' % (self.__class__.__name__, items) # Multiset-style mathematical operations discussed in: # Knuth TAOCP Volume II section 4.6.3 exercise 19 # and at http://en.wikipedia.org/wiki/Multiset # # Outputs guaranteed to only include positive counts. # # To strip negative and zero counts, add-in an empty counter: # c += Counter() def __add__(self, other): '''Add counts from two counters. >>> Counter('abbb') + Counter('bcc') Counter({'b': 4, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): newcount = count + other[elem] if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count > 0: result[elem] = count return result def __sub__(self, other): ''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd') Counter({'b': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): newcount = count - other[elem] if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count < 0: result[elem] = 0 - count return result def __or__(self, other): '''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc') Counter({'b': 3, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): other_count = other[elem] newcount = other_count if count < other_count else count if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count > 0: result[elem] = count return result def __and__(self, other): ''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc') Counter({'b': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): other_count = other[elem] newcount = count if count < other_count else other_count if newcount > 0: result[elem] = newcount return result def __pos__(self): 'Adds an empty counter, effectively stripping negative and zero counts' result = Counter() for elem, count in self.items(): if count > 0: result[elem] = count return result def __neg__(self): '''Subtracts from an empty counter. Strips positive and zero counts, and flips the sign on negative counts. ''' result = Counter() for elem, count in self.items(): if count < 0: result[elem] = 0 - count return result def _keep_positive(self): '''Internal method to strip elements with a negative or zero count''' nonpositive = [elem for elem, count in self.items() if not count > 0] for elem in nonpositive: del self[elem] return self def __iadd__(self, other): '''Inplace add from another counter, keeping only positive counts. >>> c = Counter('abbb') >>> c += Counter('bcc') >>> c Counter({'b': 4, 'c': 2, 'a': 1}) ''' for elem, count in other.items(): self[elem] += count return self._keep_positive() def __isub__(self, other): '''Inplace subtract counter, but keep only results with positive counts. >>> c = Counter('abbbc') >>> c -= Counter('bccd') >>> c Counter({'b': 2, 'a': 1}) ''' for elem, count in other.items(): self[elem] -= count return self._keep_positive() def __ior__(self, other): '''Inplace union is the maximum of value from either counter. >>> c = Counter('abbb') >>> c |= Counter('bcc') >>> c Counter({'b': 3, 'c': 2, 'a': 1}) ''' for elem, other_count in other.items(): count = self[elem] if other_count > count: self[elem] = other_count return self._keep_positive() def __iand__(self, other): '''Inplace intersection is the minimum of corresponding counts. >>> c = Counter('abbb') >>> c &= Counter('bcc') >>> c Counter({'b': 1}) ''' for elem, count in self.items(): other_count = other[elem] if other_count < count: self[elem] = other_count return self._keep_positive()
實際上,Counter是dict的一個子類,實例:
#經過字典形式統計每一個元素重複的次數傳 res = collections.Counter('abcdabcaba') print(res) #結果Counter({'a': 4, 'b': 3, 'c': 2, 'd': 1}) #dict的子類,因此也能夠以字典的形式取得鍵值對 for k in res: print(k, res[k], end=' | ') #結果 a 4 | b 3 | c 2 | d 1 | for k, v in res.items(): print(k, v, end=' | ') #結果 a 4 | b 3 | c 2 | d 1 | #經過most_common(n),返回前n個重複次數最多的鍵值對 print(res.most_common()) #結果None print(res.most_common(2)) #結果[('a', 4), ('b', 3)] #經過update來增長元素的重複次數,經過subtract來減小元素重複的次數 a = collections.Counter('abcde') res.update(a) print(res) #結果Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1}),比原來的res增長了重複次數 b = collections.Counter('aaafff') res.subtract(b) print(res) #結果Counter({'b': 4, 'c': 3, 'a': 2, 'd': 2, 'e': 1, 'f': -3}),還有負值,要注意 #fromkeys功能還沒實現,使用的話會報錯
2. OrderDict
有序字典,數據結構字典Dict是無序的,有時使用起來不是很方便,Collections裏提供一個有序字典OrderDict,用起來就很方便了
在介紹有序字典之前,用已知的知識其實能夠本身實現一個有序字典,經過列表或者元祖來維護key,實現有序字典:
lst =[] dic = {} lst.append('name') dic['name'] = 'winter' lst.append('age') dic['age'] = 18 for k in lst: print(k, dic[k])
實際上,OrderDict就是經過這種方式實現的
源代碼:
class OrderedDict(dict): 'Dictionary that remembers insertion order' # An inherited dict maps keys to values. # The inherited dict provides __getitem__, __len__, __contains__, and get. # The remaining methods are order-aware. # Big-O running times for all methods are the same as regular dictionaries. # The internal self.__map dict maps keys to links in a doubly linked list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # The sentinel is in self.__hardroot with a weakref proxy in self.__root. # The prev links are weakref proxies (to prevent circular references). # Individual links are kept alive by the hard reference in self.__map. # Those hard references disappear when a key is deleted from an OrderedDict. def __init__(*args, **kwds): '''Initialize an ordered dictionary. The signature is the same as regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. ''' if not args: raise TypeError("descriptor '__init__' of 'OrderedDict' object " "needs an argument") self, *args = args if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__hardroot = _Link() self.__root = root = _proxy(self.__hardroot) root.prev = root.next = root self.__map = {} self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link at the end of the linked list, # and the inherited dictionary is updated with the new key/value pair. if key not in self: self.__map[key] = link = Link() root = self.__root last = root.prev link.prev, link.next, link.key = last, root, key last.next = link root.prev = proxy(link) dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which gets # removed by updating the links in the predecessor and successor nodes. dict_delitem(self, key) link = self.__map.pop(key) link_prev = link.prev link_next = link.next link_prev.next = link_next link_next.prev = link_prev link.prev = None link.next = None def __iter__(self): 'od.__iter__() <==> iter(od)' # Traverse the linked list in order. root = self.__root curr = root.next while curr is not root: yield curr.key curr = curr.next def __reversed__(self): 'od.__reversed__() <==> reversed(od)' # Traverse the linked list in reverse order. root = self.__root curr = root.prev while curr is not root: yield curr.key curr = curr.prev def clear(self): 'od.clear() -> None. Remove all items from od.' root = self.__root root.prev = root.next = root self.__map.clear() dict.clear(self) def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') root = self.__root if last: link = root.prev link_prev = link.prev link_prev.next = root root.prev = link_prev else: link = root.next link_next = link.next root.next = link_next link_next.prev = root key = link.key del self.__map[key] value = dict.pop(self, key) return key, value def move_to_end(self, key, last=True): '''Move an existing element to the end (or beginning if last==False). Raises KeyError if the element does not exist. When last=True, acts like a fast version of self[key]=self.pop(key). ''' link = self.__map[key] link_prev = link.prev link_next = link.next soft_link = link_next.prev link_prev.next = link_next link_next.prev = link_prev root = self.__root if last: last = root.prev link.prev = last link.next = root root.prev = soft_link last.next = link else: first = root.next link.prev = root link.next = first first.prev = soft_link root.next = link def __sizeof__(self): sizeof = _sys.getsizeof n = len(self) + 1 # number of links including root size = sizeof(self.__dict__) # instance dictionary size += sizeof(self.__map) * 2 # internal dict and inherited dict size += sizeof(self.__hardroot) * n # link objects size += sizeof(self.__root) * n # proxy objects return size update = __update = MutableMapping.update def keys(self): "D.keys() -> a set-like object providing a view on D's keys" return _OrderedDictKeysView(self) def items(self): "D.items() -> a set-like object providing a view on D's items" return _OrderedDictItemsView(self) def values(self): "D.values() -> an object providing a view on D's values" return _OrderedDictValuesView(self) __ne__ = MutableMapping.__ne__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default @_recursive_repr() def __repr__(self): 'od.__repr__() <==> repr(od)' if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self.items())) def __reduce__(self): 'Return state information for pickling' inst_dict = vars(self).copy() for k in vars(OrderedDict()): inst_dict.pop(k, None) return self.__class__, (), inst_dict or None, None, iter(self.items()) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. If not specified, the value defaults to None. ''' self = cls() for key in iterable: self[key] = value return self def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return dict.__eq__(self, other) and all(map(_eq, self, other)) return dict.__eq__(self, other) try: from _collections import OrderedDict except ImportError: # Leave the pure Python version in place. pass
實例:
dict的方法OrderDict基本均可以使用,好比keys(), values(), clear()
注意,由於OrderDict有序,有些方法不一樣,好比,pop()和popitem()
另外OrderDict增長了一個move_to_end的方法
#建立一個有序字典 dic = collections.OrderedDict() dic['name'] = 'winter' dic['age'] = 18 dic['gender'] = 'male' print(dic) #結果OrderedDict([('name', 'winter'), ('age', 18), ('gender', 'male')]) #將一個鍵值對放入最後 dic.move_to_end('name') print(dic) #結果OrderedDict([('age', 18), ('gender', 'male'), ('name', 'winter')])
3. defaultdict
默認字典,爲字典設置一個默認類型;頗有用,好比說:
people = [['male', 'winter'], ['female', 'elly'], ['male', 'frank'], ['female', 'emma']] #將男性女性分開,全部男性放到'male'中,全部女性放放到'female'中 gender_sort = {} for info in people: if info[0] in gender_sort: gender_sort[info[0]].append(info[1]) else: gender_sort[info[0]] = [info[1]] print(gender_sort) #結果{'male': ['winter', 'frank'], 'female': ['elly', 'emma']}
若是使用defaultdict就會簡單不少
people = [['male', 'winter'], ['female', 'elly'], ['male', 'frank'], ['female', 'emma']] gender_sort = collections.defaultdict(list) for info in people: gender_sort[info[0]].append(info[1]) print(gender_sort) #結果defaultdict(<class 'list'>, {'male': ['winter', 'frank'], 'female': ['elly', 'emma']})
這就是defaultdict的最大用處
4. namedtuple
可命名元組,給元組每一個元素起一個名字,這樣就能夠經過名字來訪問元組裏的元素,加強了可讀性;尤爲對於座標,html標籤的長寬等,使用名字可讀性更強;有點相似於字典了
源代碼:
def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None): """Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', ['x', 'y']) >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with positional args or keywords >>> p[0] + p[1] # indexable like a plain tuple 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessible by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Validate the field names. At the user's option, either generate an error # message or automatically replace the field name with a valid name. if isinstance(field_names, str): field_names = field_names.replace(',', ' ').split() field_names = list(map(str, field_names)) typename = str(typename) if rename: seen = set() for index, name in enumerate(field_names): if (not name.isidentifier() or _iskeyword(name) or name.startswith('_') or name in seen): field_names[index] = '_%d' % index seen.add(name) for name in [typename] + field_names: if type(name) is not str: raise TypeError('Type names and field names must be strings') if not name.isidentifier(): raise ValueError('Type names and field names must be valid ' 'identifiers: %r' % name) if _iskeyword(name): raise ValueError('Type names and field names cannot be a ' 'keyword: %r' % name) seen = set() for name in field_names: if name.startswith('_') and not rename: raise ValueError('Field names cannot start with an underscore: ' '%r' % name) if name in seen: raise ValueError('Encountered duplicate field name: %r' % name) seen.add(name) # Fill-in the class template class_definition = _class_template.format( typename = typename, field_names = tuple(field_names), num_fields = len(field_names), arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], repr_fmt = ', '.join(_repr_template.format(name=name) for name in field_names), field_defs = '\n'.join(_field_template.format(index=index, name=name) for index, name in enumerate(field_names)) ) # Execute the template string in a temporary namespace and support # tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(__name__='namedtuple_%s' % typename) exec(class_definition, namespace) result = namespace[typename] result._source = class_definition if verbose: print(result._source) # For pickling to work, the __module__ variable needs to be set to the frame # where the named tuple is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython), or where the user has # specified a particular module. if module is None: try: module = _sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass if module is not None: result.__module__ = module return result
實例:
position_module = collections.namedtuple('position', ['x', 'y', 'z']) #'position'至關於指定一個類型,相似於上面的OrderedDict([('age', 18), ('gender', 'male'), ('name', 'winter')])中的OrderdDict a_position = position_module(3, 5, 7) print(a_position) #結果position(x=3, y=5, z=7) print(a_position.x, a_position.y, a_position.z) #結果3 5 7
再來一個更實用的:
import collections login_user = [ (r'http://www.baidu.com', 'usr1', 'pwd1'), (r'http://www.youdao.com', 'usr2', 'pwd2'), (r'http://mail.126.com', 'usr3', 'pwd3') ] page_info = collections.namedtuple('login_info', ['url', 'username', 'password']) for user in login_user: x = page_info(*user) print(x)
結果:
login_info(url='http://www.baidu.com', username='usr1', password='pwd1') login_info(url='http://www.youdao.com', username='usr2', password='pwd2') login_info(url='http://mail.126.com', username='usr3', password='pwd3')
注意,以下圖這樣不行
5. deque
deque實際上是 double-ended queue 的縮寫,雙向隊列
說到隊列就要說到隊列和棧了;隊列是FIFO,棧是FILO
隊列又分爲:單向隊列(只能從一邊放,從另一邊取);雙向隊列(兩頭均可以放,也均可以取)
Python中單向隊列就是queue.Queue
源代碼:
class deque(object): """ deque([iterable[, maxlen]]) --> deque object A list-like sequence optimized for data accesses near its endpoints. """ def append(self, *args, **kwargs): # real signature unknown """ Add an element to the right side of the deque. """ pass def appendleft(self, *args, **kwargs): # real signature unknown """ Add an element to the left side of the deque. """ pass def clear(self, *args, **kwargs): # real signature unknown """ Remove all elements from the deque. """ pass def copy(self, *args, **kwargs): # real signature unknown """ Return a shallow copy of a deque. """ pass def count(self, value): # real signature unknown; restored from __doc__ """ D.count(value) -> integer -- return number of occurrences of value """ return 0 def extend(self, *args, **kwargs): # real signature unknown """ Extend the right side of the deque with elements from the iterable """ pass def extendleft(self, *args, **kwargs): # real signature unknown """ Extend the left side of the deque with elements from the iterable """ pass def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__ """ D.index(value, [start, [stop]]) -> integer -- return first index of value. Raises ValueError if the value is not present. """ return 0 def insert(self, index, p_object): # real signature unknown; restored from __doc__ """ D.insert(index, object) -- insert object before index """ pass def pop(self, *args, **kwargs): # real signature unknown """ Remove and return the rightmost element. """ pass def popleft(self, *args, **kwargs): # real signature unknown """ Remove and return the leftmost element. """ pass def remove(self, value): # real signature unknown; restored from __doc__ """ D.remove(value) -- remove first occurrence of value. """ pass def reverse(self): # real signature unknown; restored from __doc__ """ D.reverse() -- reverse *IN PLACE* """ pass def rotate(self, *args, **kwargs): # real signature unknown """ Rotate the deque n steps to the right (default n=1). If n is negative, rotates left. """ pass def __add__(self, *args, **kwargs): # real signature unknown """ Return self+value. """ pass def __bool__(self, *args, **kwargs): # real signature unknown """ self != 0 """ pass def __contains__(self, *args, **kwargs): # real signature unknown """ Return key in self. """ pass def __copy__(self, *args, **kwargs): # real signature unknown """ Return a shallow copy of a deque. """ pass def __delitem__(self, *args, **kwargs): # real signature unknown """ Delete self[key]. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __getitem__(self, *args, **kwargs): # real signature unknown """ Return self[key]. """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __iadd__(self, *args, **kwargs): # real signature unknown """ Implement self+=value. """ pass def __imul__(self, *args, **kwargs): # real signature unknown """ Implement self*=value. """ pass def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__ """ deque([iterable[, maxlen]]) --> deque object A list-like sequence optimized for data accesses near its endpoints. # (copied from class doc) """ pass def __iter__(self, *args, **kwargs): # real signature unknown """ Implement iter(self). """ pass def __len__(self, *args, **kwargs): # real signature unknown """ Return len(self). """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass def __mul__(self, *args, **kwargs): # real signature unknown """ Return self*value.n """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __reversed__(self): # real signature unknown; restored from __doc__ """ D.__reversed__() -- return a reverse iterator over the deque """ pass def __rmul__(self, *args, **kwargs): # real signature unknown """ Return self*value. """ pass def __setitem__(self, *args, **kwargs): # real signature unknown """ Set self[key] to value. """ pass def __sizeof__(self): # real signature unknown; restored from __doc__ """ D.__sizeof__() -- size of D in memory, in bytes """ pass maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """maximum size of a deque or None if unbounded""" __hash__ = None
實例:
不少方法和list的方法相同,好比count,index等,這裏列出幾個特別的:
raw = [1,2,3] d = collections.deque(raw) print(d) #結果deque([1, 2, 3]) #右增 d.append(4) print(d) #結果deque([1, 2, 3, 4]) #左增 d.appendleft(0) print(d) #結果deque([0, 1, 2, 3, 4]) #左擴展 d.extend([5,6,7]) print(d) #結果deque([0, 1, 2, 3, 4, 5, 6, 7]) #右擴展 d.extendleft([-3,-2,-1]) print(d) #結果deque([-1, -2, -3, 0, 1, 2, 3, 4, 5, 6, 7]) #右彈出 r_pop = d.pop() print(r_pop) #結果7 print(d) #結果deque([-1, -2, -3, 0, 1, 2, 3, 4, 5, 6]) #左彈出 l_pop = d.popleft() print(l_pop) #結果-1 print(d) #結果deque([-2, -3, 0, 1, 2, 3, 4, 5, 6]) #將右邊n個元素值取出加入到左邊 print(d) #原隊列deque([-2, -3, 0, 1, 2, 3, 4, 5, 6]) d.rotate(3) print(d) #rotate之後爲deque([4, 5, 6, -2, -3, 0, 1, 2, 3])
熟練使用collections模塊,可讓咱們更加的Pythonic