JavaShuo
欄目
標籤
Self-Supervised Learning for Contextualized Extractive Summarization
時間 2021-01-02
原文
原文鏈接
ACL 2019 Self-Supervised Learning for Contextualized Extractive Summarization github 背景 本文所表述的內容十分的清晰明瞭,同樣也很簡單,即如何使用不同的預訓練策略來提升抽取式摘要任務的效果。作者指出:現有的模型在抽取句子使用交叉熵訓練模型時,往往只考慮了句子級別的信息,並沒有很好的捕獲全局或說是文檔級的信息,因此
>>阅读原文<<
相關文章
1.
論文閱讀筆記《Ranking Sentences for Extractive Summarization with Reinforcement Learning》
2.
Extractive Summarization using Continuous Vector Space Models
3.
Heterogeneous Graph Neural Networks for Extractive Document Summarization
4.
ACL2020 Heterogeneous Graph Neural Networks for Extractive Document Summarization
5.
讀論文2018 ACL A unified model for extractive and abstractive summarization using inconsistency loss
6.
【論文筆記】Heterogeneous Graph Neural Networks for Extractive Document Summarization
7.
SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documen
8.
Fine-tune BERT for Extractive Summarization中文數據集LCSTS復現
9.
#Paper Reading# Neural Extractive Summarization with Side Information
10.
《Contextualized Code Representation Learning for Commit Message Generation》閱讀
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
summarization
contextualized
learning
Deep Learning
Meta-learning
Learning Perl
for...of
69.for
for..loop
while&&for
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
深度學習硬件架構簡述
2.
重溫矩陣(V) 主成份分析
3.
國慶佳節第四天,談談我月收入增加 4K 的故事
4.
一起學nRF51xx 23 - s130藍牙API介紹
5.
2018最爲緊缺的十大崗位,技術崗佔80%
6.
第一次hibernate
7.
SSM項目後期添加數據權限設計
8.
人機交互期末複習
9.
現在無法開始異步操作。異步操作只能在異步處理程序或模塊中開始,或在頁生存期中的特定事件過程中開始...
10.
微信小程序開發常用元素總結1-1
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文閱讀筆記《Ranking Sentences for Extractive Summarization with Reinforcement Learning》
2.
Extractive Summarization using Continuous Vector Space Models
3.
Heterogeneous Graph Neural Networks for Extractive Document Summarization
4.
ACL2020 Heterogeneous Graph Neural Networks for Extractive Document Summarization
5.
讀論文2018 ACL A unified model for extractive and abstractive summarization using inconsistency loss
6.
【論文筆記】Heterogeneous Graph Neural Networks for Extractive Document Summarization
7.
SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documen
8.
Fine-tune BERT for Extractive Summarization中文數據集LCSTS復現
9.
#Paper Reading# Neural Extractive Summarization with Side Information
10.
《Contextualized Code Representation Learning for Commit Message Generation》閱讀
>>更多相關文章<<