JavaShuo
欄目
標籤
Self-Supervised Learning for Contextualized Extractive Summarization
時間 2021-01-02
原文
原文鏈接
ACL 2019 Self-Supervised Learning for Contextualized Extractive Summarization github 背景 本文所表述的內容十分的清晰明瞭,同樣也很簡單,即如何使用不同的預訓練策略來提升抽取式摘要任務的效果。作者指出:現有的模型在抽取句子使用交叉熵訓練模型時,往往只考慮了句子級別的信息,並沒有很好的捕獲全局或說是文檔級的信息,因此
>>阅读原文<<
相關文章
1.
論文閱讀筆記《Ranking Sentences for Extractive Summarization with Reinforcement Learning》
2.
Extractive Summarization using Continuous Vector Space Models
3.
Heterogeneous Graph Neural Networks for Extractive Document Summarization
4.
ACL2020 Heterogeneous Graph Neural Networks for Extractive Document Summarization
5.
讀論文2018 ACL A unified model for extractive and abstractive summarization using inconsistency loss
6.
【論文筆記】Heterogeneous Graph Neural Networks for Extractive Document Summarization
7.
SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documen
8.
Fine-tune BERT for Extractive Summarization中文數據集LCSTS復現
9.
#Paper Reading# Neural Extractive Summarization with Side Information
10.
《Contextualized Code Representation Learning for Commit Message Generation》閱讀
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
summarization
contextualized
learning
Deep Learning
Meta-learning
Learning Perl
for...of
69.for
for..loop
while&&for
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
android 以太網和wifi共存
2.
沒那麼神祕,三分鐘學會人工智能
3.
k8s 如何 Failover?- 每天5分鐘玩轉 Docker 容器技術(127)
4.
安裝mysql時一直卡在starting the server這一位置,解決方案
5.
秋招總結指南之「性能調優」:MySQL+Tomcat+JVM,還怕面試官的轟炸?
6.
布隆過濾器瞭解
7.
深入lambda表達式,從入門到放棄
8.
中間件-Nginx從入門到放棄。
9.
BAT必備500道面試題:設計模式+開源框架+併發編程+微服務等免費領取!
10.
求職面試寶典:從面試官的角度,給你分享一些面試經驗
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文閱讀筆記《Ranking Sentences for Extractive Summarization with Reinforcement Learning》
2.
Extractive Summarization using Continuous Vector Space Models
3.
Heterogeneous Graph Neural Networks for Extractive Document Summarization
4.
ACL2020 Heterogeneous Graph Neural Networks for Extractive Document Summarization
5.
讀論文2018 ACL A unified model for extractive and abstractive summarization using inconsistency loss
6.
【論文筆記】Heterogeneous Graph Neural Networks for Extractive Document Summarization
7.
SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documen
8.
Fine-tune BERT for Extractive Summarization中文數據集LCSTS復現
9.
#Paper Reading# Neural Extractive Summarization with Side Information
10.
《Contextualized Code Representation Learning for Commit Message Generation》閱讀
>>更多相關文章<<